11.6.07

Dos diâmetros conjugados para os eixos

Há problemas em que se tem um par de diâmetros conjugados e se põe a questão de determinar os eixos. Vejamos um processo prático para determinar os eixos (Luís Veiga da Cunha. Desenho Técnico. Fundação Calouste Gulbenkian. Lisboa ).


[A.A.F.)


Sejam [AB] e [CD] um par de diâmetros conjugados. Após termos verificado que [CD] é o menor diâmetro, tomamo-lo como diâmetro de uma circunferência. Tracemos a mediatriz m de [CD] e os pontos K e L de intersecção de m com a circunferência. Por um dos extremos do diâmetro maior (A na imagem), tracemos as semi-rectas AK e AL. A bissectriz do ângulo KÂL dá a direcção do eixo maior. Já podemos traçar, com intersecção em O, o par de rectas perpendiculares (a azul) que contêm os eixos.

Sendo Q a intersecção da semi-recta AL com a recta que contém o eixo menor, |AQ| é o comprimento do semi-eixo maior |QL| é o comprimento do semi-eixo menor.

8.6.07

Diâmetros conjugados segundo Apolónio

Teoremas de Apolónio:
  1. Numa elipse a soma dos quadrados de dois semi-diâmetros conjugados é constante e igual à soma dos quadrados dos dois semi-eixos: |AO|2 + |CO|2 = a2 + b2.
    Na construção que se segue, pode deslocar os pontos A, F2 e V1, confirmando esta afirmação.

  2. [A.A.F.]
  3. A área do paralelogramo construído sobre dois semi-diâmetros conjugados é constante e igual à área do rectângulo construído sobre os semi-eixos.
  4. Pode deslocar os pontos A, F e V1 para confirmar este resultado.

    [A.A.F.]
    O mesmo se passa com a hipérbole. Pode deslocar S, V1, O e F2 para confirmar o resultado.

    [A.A.F.]