Sobre os lados de um triângulo [ABC] rectângulo em Â, cujos lados do ângulo recto são b= (AC) e c=(AB), construímos, exteriormente ao nosso triângulo [ABC], os quadrados [ABNM], [BCQP], [ACRS].
Calcule a área do hexágono [MNPQRS] (em função de c e a)
A seguir, uma construção (ou ilustração):
@geometrias, 28 de Outubro de 2021, Criado com GeoGebra
E aqui fica a resolução de Mariana Sacchetti:
Interessante neste problema é verificar, tal como no problema anterior (em que o triângulo de partida é equilátero), que os triângulos da figura têm todos a mesma área.
Seja $\angle \alpha = A\hat{B}C \;$
Área de Δ $\;[NBP]\;$= $\displaystyle\frac{a.c.sen(180° - \alpha)}{2} = $
$=\displaystyle\frac{a.c.sen(\alpha)}{2} = \displaystyle\frac{a.c.\displaystyle\frac{b}{a}}{2} = \displaystyle\frac{b.c}{2}$
Área de Δ $\;[CQR]\;$= $\displaystyle\frac{a.b.sen(90° + \alpha)}{2} = \displaystyle \frac{a.b.cos(\alpha)}{2} =\displaystyle\frac{a.b.\displaystyle\frac{c}{a}}{2} = \displaystyle\frac{b.c}{2}$
Cluzel & Robert. La Géometrie et ses applications. Enseignement Technique ;Librairie Delagrave. Paris:1964