31.3.21

Razão cruzada de um feixe de quatro retas

4 retas que passam por um dado ponto gozam de uma propriedade "simples" que pode deslumbrar quem estuda geometria (projetiva, no caso). Aqui fica uma ligação à publicação de Agosto de 2012 que recorria à aplicação - Compasso e Régua (Zirkel und Linea; R. Grothmann)-, restaurada hoje com recurso a Geogebra....
Para cada feixe de retas, há uma razão (a cruzada razão) que se mantém invariante, isto é, não depende da reta que corta o feixe.... A figura permite-nos considerar isso mesmo por simples manipulação de E e F que nos deixam ver as diversas posições da reta r, o que é variável e o que se matém invariante.

[A.A.M.]

16.3.21

Teorema 119 FG-M

Enunciado do TEOREMA 119 FG-M:
São dadas duas circunferências tangentes interiormente num ponto A: a exterior de centro N, a interior de centro M. Seja AE a reta tangente às circunferências em A e seja BE a tangente à circunferência interior em C.
Demonstre que a reta AC é bissetriz do ângulo ∠BÂD.


[A.A.F.]

Demonstração:
Os segmentos AE e CE são iguais, logo ∠EAC = ∠ECA. Da geometria elementar sabe-se que:
∠EAC = (arc AD + arc DF) / 2 e ∠ECA = (arc AD + arc BF)/2
Logo arc DF = arc BF, ou seja, ∠DAC = ∠CAB;
de onde se conclui que AC é a bissetriz do ∠BAD.

13.3.21

A relação da distância entre circuncentro e incentro de um triângulo dado com os circunraio e inraio.....




[A.A.F.]
A figura dinâmica permite conjecturar que para quaisquer A, B ou C ou para qualquer triângulo ΔABC se mantém a relação estabelecida
IO2 = R2-2rR
Desloque A, B ou C...... para conjecturar.
Não deixe de tentar demonstrar...

9.3.21

Dobras de um canto com uma dada área.


Imagine que o primeiro quadrante do plano Oxy é um folha de papel gigante. Fixe uma constante k e imagine que o canto em (0,0) é dobrado para um ponto P da folha de tal modo que o triângulo da dobragem tem área k. Descreva o conjunto dos pontos que podem ocorrer como P.

► Clique no botão a que chamámos "auxiliares"

Chamamos Q e R aos dois outros vértices do triângulo da dobragem que leva O para P. E designamos por S o ponto de interseção de OP com RQ. Como os ângulos em O e em P são iguais e retos, RQ é o diâmetro da circunferência que passa por Q,P,R,O.
P obtém-se como imagem de O por uma meia volta em torno de QR, ou dito de outro modo, para cada Q e cada R, há um P imagem O por simetria de eixo QR. OQ = QP, OS = SP, OR = RP.





© geometrias, 8 dezembro 2015, Criado com GeoGebra


A área do triângulo PQR é dada por QR ╳ OP / 2 ou por QP ╳ PR / 2.
Designemos por (x, y) as coordenadas cartesianas de P: x=OQ y=OR   e por (ρ,   θ)   as coordenadas polares de P:    ρ = OP =2 ∙ SP,   θ =∠ QÔP.
No caso da nossa construção, atribuímos o valor 3 a k e a condição do problema que P deve satisfazer é, pelo que vimos, x ∙ y = 6.
Como OS ⊥ QR , do triângulo Δ OSQ, retângulo em S, tiramos OS / OQ = cos(θ) ou ρ / 2 = x.cos(θ).
Também o triângulo [RSO] é retângulo em S e RÔS = π / 2 - θ e ρ / 2=y.cos(π / 2 - θ) ou ρ / 2 = y.sen(θ) .
De ρ = 2x.cos(θ) e ρ=2.sen(θ) podemos concluir que ρ2 = 4xy.sen(θ). cos(θ) ou, por ser 2. sen(θ).cos(θ) = sen(2θ), e xy = 2k (no nosso caso 6), podemos concluir que o lugar geométrico dos pontos P(ρ , θ) tais que os triângulos (QPR) de dobragem têm área k constante satisfazem a seguinte equação
ρ 2 = 4k. sen(2 θ)
que é a equação de uma curva chamada lemniscata (meia lemniscata no nosso caso por serem x ≥ 0 ∧ y ≥ 0 restrições consideradas no enunciado do problema.)

Pode ver o lugar geométrico -- meia lemniscata -- clicando no botão "lugar geométrico dos P" ao fundo direito na figura. E pode deslocar Q para ver o ponto P descrever a curva desenhada a vermelho. É claro que, considerado que P(x, y): xy=2k e deixando livre Q(x, 0) o pontoR (0, y) é dele dependente:
y= 2k / x◾.


. Don't Cut Corners — Fold them
Suppose the first quadrant of the x-y plane is a giant sheet of paper. Fix a constant K and imagne that the corner at (0;0) is folded over onto a point P on the sheet in such a way that the triangle folded over has area k. Describe the set of ponts that can occur as P.
Konhauser, J.D.E; Velleman, Dan; Wagon, Stan. Which way did the bicycle go? . and other intriguing mathematical mysteries. Dolciani mathemetical Expositions - o 18, Mathematical Association of America: 1996.