12.5.13

Teorema de Armin Saam (demonstração usando colagens de configurações de Ceva)

Na última entrada, numa triangulação composta por triângulos equipados com configuração de Ceva em que dois triângulos adjacentes partilham um lado e o respetivo ponto de bordo, fica esclarecido que as configurações de Ceva de todos os triângulos, à exceção de um deles, induz uma configuração de Ceva neste último.
O Teorema de Ceva é um teorema de incidência e, do mesmo modo, é um teorema de incidência o última resultado obtido para a triangulação da última entrada:
A existência de um ponto de Ceva P num triângulo ABC é equivalente à relação $$\frac{AX}{XB} \times \frac{BY}{YC} \times \frac{CZ}{ZA} =1$$ em que AB.CP é X, BC.AP é Y e AC.BP é Z.
Na segunda entrada sobre o Teorema de Armin Saam consideram-se 5 retas $r_i$ distintas, intersetando-se num ponto $O$, e cinco pontos $P_i$, sendo $P_i \in r_i$. Faz-se corresponder a um ponto $A_1$ de $r_1$ um ponto $A_2$ por perspetividade centrada em $P_4$ de $r_4$ ou ${A_2}=A_1 P_4 . r_2$, e sucessivamente ${A_3}=A_2 P_5, {A_4}= A_3 P_1 . r_4, {A_5}=A_4 P_2 . r_5, {A_6}=A_5 P_3 - r_1$. Sabemos que pode acontecer que $A_6 = A_1$, mas se for $A_6 \neq A_1$, continuamos a usar as perspetividades para obter novos pontos ${A_7}= A_6 P_4.r_2, {A_8}=A_7 P_5.r_3, {A_9}=A_8 P_1.r_4, {A_{10}}=A_9 P_2.r_5 até {A_{11}}=A_{10} P_3.r_1$. E conjeturámos então que $A_{11} = A_1$, a partir da ilustração dinâmica.
Retomamos, em seguida, a ilustração dinâmica então feita e nela acrescentamos $A_1 A_7 , A_7 A_3 , A_3 A_9 , A_9 A_5 , A_5 A_1$ e a sequência dos pontos $r_4.A_1 A_7, r_5.A_7 A_3, r_1.A_3 A_9, r_2.A_9 A_5, r_3. A_5 A_1$ designados $B_i, i = 1,\ldots 5$, por essa ordem.
Realçamos os triângulos a vermelho na figura para vermos a triangulação composta por 5 triângulos equipados com configurações de Ceva, cujos pontos de Ceva são os designados {P_i}.


Por favor habilite Java para uma construção interativa (com Cinderella).

E, como sabemos, a sucessão de configurações de Ceva desde $O A_1 A_7$ até $O A_9 A_5$ obriga uma configuração de Ceva para $O A_5 A_1$ em que uma das cevianas é exatamente $A_{10} A_1$ passando por $P_3$, centro da perspetividade na configuração de Amir Saam e ponto de Ceva da triangulação. Fica assim demonstrado que as duas voltas das perspetividades nas condições de Amir Saam levam de $A_1$ para $A_1$.

Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011

Sem comentários: