As três bissectrizes de um triângulo ABC são concorrentes.
AdAM]
Demonstração: Tomemos duas quaisquer das bissectrizes, por exemplo, as bissectrizes dos ângulos A e B (como na ilustração acima) que são concorrentes num ponto, que designámos por I. Ora, se I é equidistante de AB e de AC por estar na bissectriz de A, e equidistante de AB e BC por ser bissectriz de B. Assim é equidistante de AC e BC e por isso I tem de estar sobre a bissectriz de C que é o lugar onde estão todos os pontos equidistantes dos lados do ângulo C
Na figura pode "confirmar" as afirmações do teorema, quer construindo a bissectriz de C para ver que ela passa por I, quer construindo o circulo de centro em I e tangente a BC e ver que ele é tangente ao lado AB.
Sem comentários:
Enviar um comentário