Chamamos Ta e Ia aos pontos da bissectriz do ângulo Â, o primeiro sobre a ou BC e o outro como centro da circunferência ex-inscrita.
31.10.06
Outro triângulo
A Mariana não descansa de procurar relações entre elementos de um triângulo. Enquanto digerimos algumas destas elocubrações, propomos um exercício sobre um novo triângulo [ABC]:
Dados A e a direcção AB, Ta e Ia, determinar B e C
Chamamos Ta e Ia aos pontos da bissectriz do ângulo Â, o primeiro sobre a ou BC e o outro como centro da circunferência ex-inscrita.
Chamamos Ta e Ia aos pontos da bissectriz do ângulo Â, o primeiro sobre a ou BC e o outro como centro da circunferência ex-inscrita.
30.10.06
Outro pentágono
Já construímos pentágonos, dados os raios das circunferências circunscrita e inscrita e dado o lado. Propomos agora que pense no problema da construção de um pentágono regular de que se conhece uma diagonal.
29.10.06
Os compassos
A 3 de Fevereiro de 2006, publicámos Pentágono a compasso, com a construção colorida de um pentágono regular (ou a divisão de uma circunferência em cinco arcos iguais) só com compasso, feita pela Mariana S. O que queríamos dizer quando escrevíamos "só com compasso"?
Como comentário a esse artigo, Mara Cardoso escreveu:
Realmente a construção com que a Mariana nos presenteou é de uma beleza gráfica inegável. No entanto, tenho em minha posse a construção de um pentágono regular usando apenas o compasso, uma construção de Mascheroni, portanto que gostaria de partilhar convosco aqui.
Essa construção é a seguinte:
Seja A um ponto arbitrário da circunferência K (O;r) .
Encontremos os pontos B, C e D tais que as medidas dos arcos AB, BC e CD sejam 60º.
Como o fazer?
Traçamos uma circunferência de centro A e raio r. Seja B o ponto de intersecção dessa circunferência com K(O;r).
Tracemos uma nova circunferência de centro B com o mesmo raio. Seja C o novo ponto de intersecção.
Analogamente, traçamos uma circunferência C(C;r) e o ponto D é a intersecção de K com C.
Seguidamente?
Com centros A e D e raio AC tracemos dois arcos.
Seja X um dos pontos de intersecção desses dois arcos.
Tracemos uma circunferência C(A; OX) e seja F um dos ponto de intersecção de K com C, ponto médio do arco BC.
Agora, com o raio de K e centro em F, tracemos uma circunferência que intersecta K nos pontos G e H.
Por fim, com centros em G e H e raio OX tracemos dois arcos.
Seja y o ponto de intersecção desses dois arcos.
Assim, AY será igual ao lado do pentágono pretendido.
Agora, basta traçar sucessivos arcos a partir de A e com raio AY e, os pontos de intersecção desses arcos com a circunferência K são os pontos o pentágono pretendido."
Será que Mara está a falar do mesmo que a Mariana? Será que ambas as construções usam o mesmo compasso?
A Mariana S. usou, na sua construção, tão só, o terceiro postulado d'OS ELEMENTOS. Euclides dizia:
Pede-se como cousa possivel, que se tire de um ponto qualquer para outro qualquer ponto uma linha recta.
E que uma linha recta determinada se continue em direitura de si mesma, até onde seja necessario.
E que com qualquer centro e qualquer intervallo se descreva um circulo.
A estes postulados, humildes pedidos, correspondem instrumentos que podemos chamar régua não graduada e compasso de Euclides.
Mara usa outro compasso, que permite transferir comprimentos e é aquele a que vulgarmente chamamos compasso, por exemplo, quando faz a circunferência de centro em A e raio |OX|. Claro que podemos transferir comprimentos com o compasso euclidiano, mas isso exige várias operações em sequência. O trabalho da transferência de comprimentos do compasso da Mara foi substituído por trabalhos com régua não graduada e compasso de Euclides (pelos postulados) foi tratado n'OS ELEMENTOS, com a PROP. II. PROB.
De um ponto dado tirar uma linha recta igual á outra recta dada ( Fig. 19 ).
Seja dado o ponto A, e dada tambem a recta BC. Se deve do ponto A tirar uma linha recta egual á recta dada BC.
Do ponto A para o ponto B tire-se ( Post. 1 ) a recta AB, e sobre esta se faça ( Prop. 1, 1 ) o triangulo equilatero DAB; e se produzam ( Post. 2 ) as rectas AE, BF em direitura das rectas DA, DB. Com o centro B e o intervallo BC se descreva ( Post. 3 ) o circulo CGH; e tambem com o centro D e o intervallo DG se descreva o circulo GKL. Sendo o ponto B o centro do circulo CGH, será BC=BG ( Def. 15 ). E sendo D o centro do circulo GKL, será DL=DG. Mas as partes DA, DB das rectas DL, DG são eguaes. Logo, tiradas estas, as partes residuas AL, BG serão tambem eguaes ( Ax. 3 ). Mas temos demonstrado, que é BC=BG. Logo cada uma das duas AL, BC será egual a BG. Mas as cousas eguaes a uma terceira, são eguaes entre si. Logo será AL=BC; e por consequencia temos tirado do ponto A a linha recta AL egual a outra dada BC.
Se tivermos de dispensar a régua não graduada, para o mesmo trabalho, vemos como os dois compassos são radicalmente diferentes. Tivemos de esperar por Bohr e Mascheronni para ver como o compasso que a Mariana usou pode substituir (labor, lavor) o compasso de Mara. Havemos de voltar a este assunto dos compassos. Quem sabe se pela mão de Mara Cardoso.
Aproveitamos para recomendar uma visita a Eduardo Veloso e amigos que tratam da construção geométrica e, particularmente, dos compassos - euclidiano ou "sem memória", moderno ou capaz de transferir comprimentos.
Os excertos d'Os Elementos, aqui publicados, foram retirados da versão publicada por Jaime Carvalho e Silva, em Nonius
Como comentário a esse artigo, Mara Cardoso escreveu:
Realmente a construção com que a Mariana nos presenteou é de uma beleza gráfica inegável. No entanto, tenho em minha posse a construção de um pentágono regular usando apenas o compasso, uma construção de Mascheroni, portanto que gostaria de partilhar convosco aqui.
Essa construção é a seguinte:
Seja A um ponto arbitrário da circunferência K (O;r) .
Encontremos os pontos B, C e D tais que as medidas dos arcos AB, BC e CD sejam 60º.
Como o fazer?
Traçamos uma circunferência de centro A e raio r. Seja B o ponto de intersecção dessa circunferência com K(O;r).
Tracemos uma nova circunferência de centro B com o mesmo raio. Seja C o novo ponto de intersecção.
Analogamente, traçamos uma circunferência C(C;r) e o ponto D é a intersecção de K com C.
Seguidamente?
Com centros A e D e raio AC tracemos dois arcos.
Seja X um dos pontos de intersecção desses dois arcos.
Tracemos uma circunferência C(A; OX) e seja F um dos ponto de intersecção de K com C, ponto médio do arco BC.
Agora, com o raio de K e centro em F, tracemos uma circunferência que intersecta K nos pontos G e H.
Por fim, com centros em G e H e raio OX tracemos dois arcos.
Seja y o ponto de intersecção desses dois arcos.
Assim, AY será igual ao lado do pentágono pretendido.
Agora, basta traçar sucessivos arcos a partir de A e com raio AY e, os pontos de intersecção desses arcos com a circunferência K são os pontos o pentágono pretendido."
Será que Mara está a falar do mesmo que a Mariana? Será que ambas as construções usam o mesmo compasso?
A Mariana S. usou, na sua construção, tão só, o terceiro postulado d'OS ELEMENTOS. Euclides dizia:
Pede-se como cousa possivel, que se tire de um ponto qualquer para outro qualquer ponto uma linha recta.
E que uma linha recta determinada se continue em direitura de si mesma, até onde seja necessario.
E que com qualquer centro e qualquer intervallo se descreva um circulo.
A estes postulados, humildes pedidos, correspondem instrumentos que podemos chamar régua não graduada e compasso de Euclides.
Mara usa outro compasso, que permite transferir comprimentos e é aquele a que vulgarmente chamamos compasso, por exemplo, quando faz a circunferência de centro em A e raio |OX|. Claro que podemos transferir comprimentos com o compasso euclidiano, mas isso exige várias operações em sequência. O trabalho da transferência de comprimentos do compasso da Mara foi substituído por trabalhos com régua não graduada e compasso de Euclides (pelos postulados) foi tratado n'OS ELEMENTOS, com a PROP. II. PROB.
De um ponto dado tirar uma linha recta igual á outra recta dada ( Fig. 19 ).
Seja dado o ponto A, e dada tambem a recta BC. Se deve do ponto A tirar uma linha recta egual á recta dada BC.
Do ponto A para o ponto B tire-se ( Post. 1 ) a recta AB, e sobre esta se faça ( Prop. 1, 1 ) o triangulo equilatero DAB; e se produzam ( Post. 2 ) as rectas AE, BF em direitura das rectas DA, DB. Com o centro B e o intervallo BC se descreva ( Post. 3 ) o circulo CGH; e tambem com o centro D e o intervallo DG se descreva o circulo GKL. Sendo o ponto B o centro do circulo CGH, será BC=BG ( Def. 15 ). E sendo D o centro do circulo GKL, será DL=DG. Mas as partes DA, DB das rectas DL, DG são eguaes. Logo, tiradas estas, as partes residuas AL, BG serão tambem eguaes ( Ax. 3 ). Mas temos demonstrado, que é BC=BG. Logo cada uma das duas AL, BC será egual a BG. Mas as cousas eguaes a uma terceira, são eguaes entre si. Logo será AL=BC; e por consequencia temos tirado do ponto A a linha recta AL egual a outra dada BC.
Se tivermos de dispensar a régua não graduada, para o mesmo trabalho, vemos como os dois compassos são radicalmente diferentes. Tivemos de esperar por Bohr e Mascheronni para ver como o compasso que a Mariana usou pode substituir (labor, lavor) o compasso de Mara. Havemos de voltar a este assunto dos compassos. Quem sabe se pela mão de Mara Cardoso.
Aproveitamos para recomendar uma visita a Eduardo Veloso e amigos que tratam da construção geométrica e, particularmente, dos compassos - euclidiano ou "sem memória", moderno ou capaz de transferir comprimentos.
Os excertos d'Os Elementos, aqui publicados, foram retirados da versão publicada por Jaime Carvalho e Silva, em Nonius
26.10.06
Sétimo despertar
No Geometriagon (ver exercícios 465, 387, 388, etc) e neste blogue ( ver 19/10), aparecem uns quantos problemas cujos dados são raios de círculos ex-inscritos. A sua solução é possibilitada recorrendo a resultados que o trabalho da Marianna trouxe para a (nossa pequena) ribalta.
1. Dados os raios de dois círculos ex-inscritos referentes a dois dos vértices de um triângulo, é possível obter a altura referente ao terceiro vértice.
Suponhamos dados ra e rb, vamos obter hc. Tomemos uma recta r e tracemos duas perpendiculares: numa delas marcamos o comprimento ra e noutra comprimento rb. Unindo extremos não consecutivos, obtemos um ponto de intersecção de duas rectas a meia altura -hc - do triângulo das circunferências exinscritas com aqueles raios.
[A.A.F]
2. Dados um lado de um triângulo e os raios dos dois círculos exinscritos referentes aos dois vértices desse lado, é possível obter os centros desses círculos.
Suponhamos dados o lado AB e os raios ra e rb. Tomemos BB' de comprimento ra perpendicular a AB em B e AA' de comprimento rb perpendicular a AB em A. Já vimos como obter hc. Tracemos duas paralelas a AB: uma por A', outra por B'. Desenhemos o rectângulo A'DB'E; as suas diagonais intersectam-se em K. O ponto K é centro de uma circunferência que contem A, B, Ia e Ib. A recta EB' determina Ia, a recta DA' determina Ib.
[A.A.F]
sem esquecer nem esconder a melancolia das construções com ReC ou CaR ou ZuL e R. Grothmann.
Também não apagamos os "combates geométricos" e todo o trabalho ligado ao conhecido por "Geometriagon" e a "Giovanni Artico, com R. Grothman" patente na primeira linha desta entrada.
1. Dados os raios de dois círculos ex-inscritos referentes a dois dos vértices de um triângulo, é possível obter a altura referente ao terceiro vértice.
Suponhamos dados ra e rb, vamos obter hc. Tomemos uma recta r e tracemos duas perpendiculares: numa delas marcamos o comprimento ra e noutra comprimento rb. Unindo extremos não consecutivos, obtemos um ponto de intersecção de duas rectas a meia altura -hc - do triângulo das circunferências exinscritas com aqueles raios.
[A.A.F]
2. Dados um lado de um triângulo e os raios dos dois círculos exinscritos referentes aos dois vértices desse lado, é possível obter os centros desses círculos.
Suponhamos dados o lado AB e os raios ra e rb. Tomemos BB' de comprimento ra perpendicular a AB em B e AA' de comprimento rb perpendicular a AB em A. Já vimos como obter hc. Tracemos duas paralelas a AB: uma por A', outra por B'. Desenhemos o rectângulo A'DB'E; as suas diagonais intersectam-se em K. O ponto K é centro de uma circunferência que contem A, B, Ia e Ib. A recta EB' determina Ia, a recta DA' determina Ib.
[A.A.F]
sem esquecer nem esconder a melancolia das construções com ReC ou CaR ou ZuL e R. Grothmann.
Também não apagamos os "combates geométricos" e todo o trabalho ligado ao conhecido por "Geometriagon" e a "Giovanni Artico, com R. Grothman" patente na primeira linha desta entrada.
19.10.06
Um certo triângulo
Mara Isabel Cardoso, uma jovem professora de Matemática, colaborou aqui no bloGeometria (com um comentário e várias propostas) e também no Geometriagon. Foi, aliás, a única portuguesa (até hoje, para além de nós, aqui neste canto) que acrescentou um problema (o problema 523) à lista do Geometriagon, seguindo uma sugestão do Curso de Geometria de Paulo Ventura Araújo, publicado pela Gradiva. Agradecemos publicamente a Mara Isabel a participação de que abordaremos alguns aspectos em futuros artigos.
Não vamos apresentar aqui o problema 523, proposto por Mara Isabel. Apresentamos antes um outro que esse nos lembra e nos remete para o mesmo Curso de Geometria.
Aqui vai:
Tome um ângulo agudo qualquer de vértice A, e, entre os seus lados, um ponto P qualquer. Determine B e C sobre os lados do ângulo A, de tal modo que P seja o ponto médio de [BC].
Clicando sobre a ilustração ou sobre o enunciado, tem acesso ao exercício interactivo.
Não vamos apresentar aqui o problema 523, proposto por Mara Isabel. Apresentamos antes um outro que esse nos lembra e nos remete para o mesmo Curso de Geometria.
Aqui vai:
Tome um ângulo agudo qualquer de vértice A, e, entre os seus lados, um ponto P qualquer. Determine B e C sobre os lados do ângulo A, de tal modo que P seja o ponto médio de [BC].
Clicando sobre a ilustração ou sobre o enunciado, tem acesso ao exercício interactivo.
9.10.06
Outro problema triangular
A Mariana propôs um resultado sobre triângulos e nós ficámos sem saber muito bem o que fazer dele. Sem saber como falar dele sem ser a falar por falar. Mas aqui fica o desafio para pensar.
Determinar o vértice C do triângulo [ABC] de que se conhecem os lados a e c e os raios ra e rb dos círculos ex-inscritos nos ângulos A e B
Clicando sobre o enunciado, tem acesso ao respectivo exercício interactivo.
O que é simples e interessante disto é o que vou propor aos meus alunos do 8º ano na forma do Desafio que saiu no Público, pela mão do J. P. Viana, num dos últimos meses de 1998. Que desafio?
A Mariana garante (e com razão!) que pode dispensar um dos dados - o lado a, por exemplo. Experimente realizar o exercício interactivo sem precisar do lado a.
Determinar o vértice C do triângulo [ABC] de que se conhecem os lados a e c e os raios ra e rb dos círculos ex-inscritos nos ângulos A e B
Clicando sobre o enunciado, tem acesso ao respectivo exercício interactivo.
O que é simples e interessante disto é o que vou propor aos meus alunos do 8º ano na forma do Desafio que saiu no Público, pela mão do J. P. Viana, num dos últimos meses de 1998. Que desafio?
A Mariana garante (e com razão!) que pode dispensar um dos dados - o lado a, por exemplo. Experimente realizar o exercício interactivo sem precisar do lado a.
2.10.06
Animação com triângulo e hipérbole
Até agora não tínhamos conseguido fazer uma animação razoável para mostrar a ligação entre a hipérbole equilátera dos exincentros de um triângulo com a circunferência a ele circunscrita. Os olhos da Mariana que viram a relação entre triângulos dos exincentros e o triãngulo órtico deram conta do recado que aqui entregamos. Clique para ver a animação.
Toda a hipérbole equilátera que passa pelos exincentros Ia, Ib, Ic e pelo incentro I de um triângulo [ABC] tem o centro Oh sobre o círculo circunscrito ao triângulo.
Toda a hipérbole equilátera que passa pelos exincentros Ia, Ib, Ic e pelo incentro I de um triângulo [ABC] tem o centro Oh sobre o círculo circunscrito ao triângulo.
Subscrever:
Mensagens (Atom)