1. Dados os raios de dois círculos ex-inscritos referentes a dois dos vértices de um triângulo, é possível obter a altura referente ao terceiro vértice.
Suponhamos dados ra e rb, vamos obter hc. Tomemos uma recta r e tracemos duas perpendiculares: numa delas marcamos o comprimento ra e noutra comprimento rb. Unindo extremos não consecutivos, obtemos um ponto de intersecção de duas rectas a meia altura -hc - do triângulo das circunferências exinscritas com aqueles raios.
[A.A.F]
2. Dados um lado de um triângulo e os raios dos dois círculos exinscritos referentes aos dois vértices desse lado, é possível obter os centros desses círculos.
Suponhamos dados o lado AB e os raios ra e rb. Tomemos BB' de comprimento ra perpendicular a AB em B e AA' de comprimento rb perpendicular a AB em A. Já vimos como obter hc. Tracemos duas paralelas a AB: uma por A', outra por B'. Desenhemos o rectângulo A'DB'E; as suas diagonais intersectam-se em K. O ponto K é centro de uma circunferência que contem A, B, Ia e Ib. A recta EB' determina Ia, a recta DA' determina Ib.
[A.A.F]
sem esquecer nem esconder a melancolia das construções com ReC ou CaR ou ZuL e R. Grothmann.
Também não apagamos os "combates geométricos" e todo o trabalho ligado ao conhecido por "Geometriagon" e a "Giovanni Artico, com R. Grothman" patente na primeira linha desta entrada.