11.2.08

Paralelismo e homólogos de pontos no infinito

Há duas rectas que desempenham um papel importante em questões de homologia: as rectas limite, l e l’:
- a recta limite l é a recta original que tem como imagem a recta do infinito (assim, se as rectas r e s se intersectam num ponto de l, as suas imagens r’ e s’ serão paralelas) ;
- a recta limite l’ é a imagem da recta do infinito (assim, se as rectas r e s são paralelas, as suas imagens r’ e s’ intersectam-se sobre l’).
As rectas limite, como rectas homólogas que são, intersectam-se num ponto do eixo que, atendendo à definição, é ponto impróprio; logo as rectas limite são paralelas ao eixo.

Vejamos como determinar as rectas limite, supondo conhecidos o centro, o eixo e um par de pontos homólogos (A, A’); tomemos um ponto E sobre o eixo e tracemos as rectas AE e A’E;
- tiremos por O uma paralela à recta A’E - a sua intersecção P com a recta AE’ é um ponto de l ;
- tiremos por O uma paralela à recta AE - a sua intersecção Q com a recta AE é um ponto de l’.
Notemos que [OPEQ] é um paralelogramo; então OP = EQ e concluímos:
a distância do centro à recta limite l é igual à distância do eixo à recta limite l’.


7.2.08

Um centro para uma homologia

[Exercício interactivo:]

Determinar o centro O da homologia de eixo e que transforma A, B e C em pontos das rectas a, b e c, respectivamente.

4.2.08

Reconstruir uma homologia a partir de originais e seus homólogos

[Exercício interactivo]

Determinar o eixo e o centro da homologia que transforma um triângulo noutro (dados).

2.2.08

Reconstruir um triâgulo a partir do homólogo

[Exercício interactivo]
Na homologia de centro O e eixo e, é dado o triângulo [A'B'C'] e o transformado C de C'. Determine A e B.



1.2.08

Determinar homólogo de um ponto

[Exercício interactivo:]
Na homologia de centro O e eixo e, é dado o par de pontos homólogos (A,A'). Determine o homólogo do original B.

30.1.08

Homologia

Em tempos propusemo-nos, neste blogue, apresentar temas de geometria hoje pouco ou nada abordados nos programas portugueses dos ensinos secundário e superior; não que tenham perdido interesse, mas não há tempo para tudo! A nossa finalidade era fornecer uma base para resolver muitos dos problemas apresentados no Geometriagon. Atendendo a que têm aparecido recentemente problemas que exigem conhecimentos de homologia, propomo-nos, portanto, dedicar alguma atenção a esta transformação geométrica. Utilizaremos basicamente duas obras que tratam este tema:

  • "Geometria Descriptiva Superior y Aplicada" de Fernando Izquierdo Ascensi

  • "Curso de Geometria Métrica" de Puig Adam.


  • A homologia é um caso particular de conjunto mais vasto de transformações designadas por homografias.

    "Duas figuras planas são homográficas quando se correspondem ponto a ponto e recta a recta, de tal modo que a todo o ponto e recta incidentes numa das figuras correspondem um ponto e uma recta também incidentes na outra."

    Um exemplo muito simples é a projecção de uma figura contida num plano sobre outro plano a partir de um ponto:




    Uma Homologia é uma homografia em que:

    • os pontos homólogos estão alinhados com um ponto fixo designado por “centro de homologia”, O; cada recta que passa por O tem como imagem ela própria – recta dupla;

    • as rectas homólogas cortam-se em pontos de uma recta dita “eixo de homologia”, e; cada ponto do eixo tem como imagem ele próprio – recta de pontos duplos.



    Nota:
    A homografia da construção dinâmica é uma homologia. Pode deslocar qualquer dos planos ou o ponto O, e pode deslocar qualquer dos vértices da figura. Verá que quando o desloca para a charneira e ele coincide com a sua projecção. Sobre essa charneira estão todos os pontos da homologia de centro O e eixo e.

    22.1.08

    Onde estão os centros da cadeia de Pappus

    O lugar geométrico dos centros P das circunferências de uma cadeia de Pappus para um dado arbelos é uma elipse. Para este resultado, a Mariana apresentou uma prova muito elegante e simples.

    A construção que se segue pode ser ampliada ou reduzida por manipulação dos pontos A ou B. A circunferência exterior do arbelos da figura tem centro O e diâmetro [AB]. Chamemos R ao raio desta circunferência. As outras circunferências do arbelos são as centradas em O1 e O2 e de raios r1=|AH|/2 e r2=|HB|/2. Movendo H, pode modificar estas circunferências interiores do arbelos. Movendo P* sobre AB também pode verificar o comportamento das diversas circunferências da cadeia de Pappus.



    Para que a circunferência de centro P seja tangente externamente à circunferência de centro O1 é necessário que tenha um raio r tal que |O1P|=|O1T|+|TP|=r1+r e para que, ao mesmo tempo, seja tangente internamente à circunferência de centro em O é necessário que |OP|=|OS|-|PS|=R-r.
    Por isso, se P é centro de uma circunferência da cadeia de Pappus, então |O1P|=r1+r e |OP|=R-r. O que quer dizer que, para cada arbelos e uma das suas circunferências interiores, |OP|+|O1P|=R+r1, constante, que é o mesmo que dizer que P é um ponto de uma elipse de focos O e O1 e eixo maior R+r1 (ou |AO2|=2R-r2=R+r1, por ser |AB|=|AH+|HB|=2r1+2r2=2R, de onde se tira que R=r1+ r2, R+r1=2r1+ r2=|AO2|.

    Para a cadeia de Pappus relativa à outra circunferência, construção e prova são inteiramente análogas.

    19.1.08

    Arbelos: a cadeia de Papus

    Durante algum tempo, a Mariana ficou presa nas animações da cadeia de Papus e da beleza que elas produzem. A última animação que nos enviou foi a que juntamos nesta entrada.
    A Mariana obteve um novo efeito ao juntar para cada umas das circunferências de anteriores animações (tangentes externamente a uma das pequenas e internamente à grande circunferência do arbelos) a outra circunferência concêntrica tangente externamente à mais pequena.
    O lugar geométrico dos centros destas circunferências é uma elipse. E António Aurélio não se cansa de referir o interesse de mostrar a prova deste resultado neste lugar geométrico.
    Quer experimentar antes de o fazermos?

    2014
    EUCLIDES
    Instrumentos e métodos

    de resolução de problemas de construção