12.12.14

Pontos equidistantes de uma circunferência e de uma reta que a interseta. (2)


Vamos nesta entrada prosseguir o trabalho iniciado nas entradas anteriores, construindo o lugar geométrico dos pontos equidistantes de uma circunferência $\;(O, \; r)\;$ e de uma reta$\;a\;$ que a interseta.


Na nossa construção,
$\;\; \fbox{n=1}:\;\;$ é dada a circunferência $\;(O, \; r)\;$ e uma reta $\;a\;$ que a interseta em $\;B, \;C\;$.
Fazendo variar os valor de $\;n\;$ no cursor $\;\fbox{n=}\;$, pode seguir os passos da resolução do problema de construção do lugar geométrico dos pontos equidistantes de $\;a\;$ e de $\;(O, \;r).\;$ Usando os pontos $\;A \;$ e $\;T\;$ pode variar a posição da reta $\;a\;$
$\;\; \fbox{n=2}:\;\;$ A reta definida por $\;A\,$ e $\;O\;$ interseta a circunferência no ponto $\;T\;$ que é o ponto da circunferência mais próximo de $\;a.\;$ A distância de $\;a\;$ à circunferência é, pois, $\;AT= r-AO\;$ e o ponto médio do segmento $\;AT\;$ é equidistante de $\;a\;$ e de $\;(O, \;r)\;$ e, por isso, é um ponto do lugar geométrico que procuramos. Para determinar outros pontos $\;Q\;$ equidistantes de $\;a\;$ e de $\;(O, \;r)\;$ tomamos um ponto $\;D\;$ variável da circunferência e a tangente em $\;D\;$ perpendicular a $\;DA\;$ que contém os segmentos de reta cujos comprimentos são distâncias de pontos à circunferência. Os pontos $\;Q\;$ equidistantes da circunferência e da reta encontram-se como interseções de $\;a\;$ com as bissetrizes dos ângulos $\;D\hat{G}A\;$ das tangentes nos ponto $\;D\;$ com a reta $\;\;a\;$.

© geometrias, 11 de Dezembro de 2014, Criado com GeoGebra




$\;\; \fbox{n=3}:\;\;$ Quando o ponto $\;D\;$ percorre o arco $\;BTC\;$ da circunferência, os pontos $\;Q\;$ do semiplano determinado pela reta $\;a\;$ e pelo ponto $\;T\;$ percorrem um arco de parábola de foco $\;O\;$ e diretriz $\;d_1\;$ determinada de modo análogo ao usado na entrada anterior.
$\;\; \fbox{n=4}:\;\;$ Para determinar outros pontos $\;P\;$ equidistantes de $\;a\;$ e da circunferência, procedemos de modo inteiramente análogo usando um ponto $\;E\;$ do arco $\;CEB\;$ da circunferência no outro dos semi-planos definidos pela reta $\;a\;$ .
$\;\; \fbox{n=5}:\;\;$ E de modo análogo, vimos que quando $\;E\;$ percorre o arco da circunferência, $\;P\;$ percorre um arco de parábola de foco $\;O\;$ e diretriz $\,d_2\;$
Claro que estas duas parábolas (que se intersetam nos pontos $\;B, \;C\;$ e em que a reta $\;a\;$ interseta $\;(O, \;r)\;$ de que apresentámos um arco de cada) constituem o lugar geométrico dos pontos equidistantes da circunferência e da reta $\;a\;$ que a intersete em dois pontos distintos. Separámos os arcos para $\;D\;$ e $\;E\;$ para simplificar a figura.
$\;\; \fbox{n=6}:\;\;$ Poderá verificar o que atrás afirmamos seguindo a animação de um ponto $\;M\;$ que percorre a circunferência, para o qual se determinam pontos das duas bissetrizes do ângulo formado pela tangente em $\;M\;$, perpendicular a $\;OM,\;$ e a reta $\;a\;$. Para cada ponto $\;M\;$ estão determinados sobre essas bissetrizes dois pontos equidistantes de $\;a\;$ e de $\;(O, \;r)\;$. Estes pontos estão sobre as duas parábolas referidas.
Deslocando $\;A\;$ até que este coincida com $\;T\;$ pode ver que o lugar geométrico é formado por uma reta que passa por $\;O\;$ pelo ponto de tangência da reta com a circunferência e por uma parábola
Se a reta $\;a\;$ passa por $\;O\;$ o lugar geométrico é constituído por duas parábolas que se intersetam nos extremos de um diâmetro da circunferência.

8.12.14

Pontos equidistantes de uma reta e de uma circunferência (1)


Vamos nesta entrada prosseguir o trabalho iniciado nas entradas anteriores, construindo o lugar geométrico dos pontos equidistantes de uma circunferência $\;(O, \; r)\;$ e de uma reta $\;a\;$ que não interseta essa circunferência.


Na nossa construção,
  1. é dada a circunferência $\;(O, \; r)\;$ e uma reta $\;a\;$ que a não interseta;
  2. a reta perpendicular a $\;a\,$ tirada por $\;O\;$ interseta a circunferência no ponto $\;B_0\;$ que é o ponto da circunferência mais próximo de $\;a.\;$ A distância de $\;A_0\;$ à circunferência é, pois, $\;A_0B_0= r-A_0O,\;$, já que $\;A_0\;$ é exterior à circunferência, e o ponto $\;P_0,\;$ médio do segmento $\;A_0B_0\;$ é equidistante de $\;A_0\;$ e de $\;(O, \;r)\;$ e, por isso, é um ponto do lugar geométrico que procuramos;


  3. © geometrias, 8 de Dezembro de 2014, Criado com GeoGebra




  4. para determinar outros pontos $\;P\;$ equidistantes de $\;a\;$ e da circunferência, lembremo-nos que a distância de pontos $\; P\;$ à circunferência é medida sobre a reta $\;PO\;$. Tomando um ponto $\;B\;$ da circunferência, variável, a existir cada um dos pontos $\;P\;$ que procuramos, estará sobre alguma reta $\;BO,\;$ com $\;B\;$ a percorrer a circunferência. Como a distância $\;PB\;$ de $\;P\;$ à circunferência terá de ser igual a $\;PA, \;$ $\;P\;$ terá de ser um ponto da bissetriz do ângulo formado pela tangente em $\;B\;$ e por $\;a\;$, para cada $\;B\;$ da circunferência;
  5. como sabemos para cada ponto $\;B,\;$ há um ponto $\;P\;$ para o qual $\;AP= PB,\;$ sendo $\;AP \perp a, \;$ e sobre a reta $\;AP\;$ há um ponto $\;U\;$ tal que $\;AU=r\;$ ou $\;PU = PO.\;$ $\;PU\;$ é a distância de $\;P\;$ à reta $\;d\;$ paralela a $\;a\;$ e que dela dista $\;r, \;$ como se pode ver na nossa figura.
  6. Os pontos $\;P\;$ equidistantes de $\;a\;$ e de $;(O, \;r)\;$ são equidistantes de $\;O\;$ e de $\;d\;$, isto é, estão sobre uma parábola de diretriz $\;d\;$ e de foco $\;O.\;$

    1. Clicando sobre o botão $\;\fbox{|>}\;$ poderá ver a curva que o ponto $\;P\;$ percorre.
      Na nossa construção, consideramos a reta $\;a\;$ não secante nem tangente à circunferência $\;(O, \;r)\;$ e os pontos $\;B\;$ da circunferência tais que $\; \angle A_0Ô B \leq \displaystyle \frac{\pi}{2} .\,$ Veremos outras construções com outras restrições em próximas entradas.