8.7.08

De volta aos triângulos

Regressamos a um tema inesgotável – TRIÂNGULOS ! É nossa intenção seguir o seguinte plano:

  1. pontos notáveis;
  2. rectas notáveis;
  3. círculos notáveis;
  4. cónicas notáveis.

Como o tema é… inesgotável, claro que não vamos tratar de “todos” os ponto, “todas” as rectas, “todos” os círculos, “todas” as cónicas. Apenas daremos mais alguns passos.


Tomaremos como base principal uma obra de 1937 que actualmente é pouco conhecida e difícil de encontrar: “Enciclopedia delle Matematiche Elementari e Complementi”, artigo redigido por Virginio Retali e Giuseppina Biggiogero e intitulado “La Geometria del Triangolo”



TRIÂNGULOS - PONTOS NOTÁVEIS


Menelau (séc I dC) foi um dos grandes da Escola de Alexandria; da sua vasta obra actualmente apenas se fala no teorema a que se dá o seu nome. Notemos que Melenau procedeu à extensão deste resultado a triângulos esféricos, facto notável para a sua época!
Na construção que se segue, relativa ao teorema de Menelau, pode movimentar os pontos e verificar os cálculos de razões. Verificará que ao movimentar A, B ou C as razões variam e verá porque é que o produto é 1. Verificará que, para cada triângulo [ABC], elas se mantêm invariantes se deslocar os pontos da recta que atravessa o triângulo.

3.7.08

A afinidade generaliza Napoleão.

Generalização do Teorema de Napoleão
Será que os baricentros de n-ágonos regulares construídos (interna ou externamente) sobre cada um dos lados de um dado n-ágono formam por sua vez um outro nágono regular?

Teorema de Thébault
Thébault demonstrou que para um paralelogramo os baricentros dos quadrados construídos (interna ou externamente) sobre os seus lados formam sempre um outro quadrado .

Ora, o triângulo e o paralelogramo são exemplos de polígonos regulares afins, isto é, polígonos que são sempre imagem por uma transformação afim de um triângulo equilátero e de um quadrado, respectivamente.

Teorema de Barlotti
Em 1955, Barlotti, demonstrou que: Dado um n-ágono qualquer, se este for imagem por uma transformação afim de um n-ágono regular, então o n-ágono formado pelos baricentros dos n-ágonos regulares construídos (interna ou externamente) sobre os seus lados é um n-ágono regular



[A.A.F.]


É interessante mover o ponto A’ mudando a direcção da afinidade e observar quando A’,B’,C’ e D’ são colineares ou quando estes coincidem dois a dois.