29.1.09

O ponto de Steiner e o ponto G

No triângulo ABC, sejam
- A’ o simétrico de A em relação a G
- B’ o simétrico de B em relação a G
- C’ o simétrico de C em relação a G;
as três circunferências definidas pelos conjuntos de ternos de pontos AB’C’, BA’C’, CA’B’ intersectam-se num ponto do circuncírculo - ponto de STEINER. A cada uma das três circunferências dá-se o nome de “círculo de Steiner”



Nesta construção dinâmica, criada com GeoGebra, pode deslocar os vértices do triângulo para verificar.

Ponto de Steiner e triângulo de Brocard

No triângulo ABC sejam O o centro do circuncírculo e Le o ponto simediano (ou de Lemoine). O círculo de diâmetro OLe é o círculo de Brocard, como vimos. Por O tracemos perpendiculares aos lados a, b, c; as suas intersecções com o círculo de Brocard são os vértices A’, B’, C’ do “primeiro triângulo de Brocard”. Por A tracemos uma paralela ao lado B’C’, por B uma paralela ao lado A’C’, por C uma paralela ao lado A’B’: as três rectas intersectam-se no ponto de Steiner. O ponto de Steiner é sempre um ponto do circuncírculo.




Sobre esta construção, criada com GeoGebra, pode deslocar os vértices para verificar os invariantes. A única ferramenta - ao cimo à direita - permite-lhe voltar ao ponto de partida. Se precisar da aplicação GeoGebra, basta clicar duas vezes sobre o quadro dinâmico.