26.9.08

Triângulos inversamente semelhantes

Dado o triângulo ABC, sejam V1 e V2 os seus pontos de Fermat e W1 e W2 os pontos isodinâmicos. Os triângulos [V1V2W1] e [V1V2W2] são inversamente semelhantes. De facto, são iguais os ângulos ∠V1V2W2 = ∠ W1V1V2, etc



[A.A.F.]

Pontos Isodinâmicos e de Napoleão

Recordemos que para obter os pontos isogónicos (ou de Fermat), W1 e W2, construímos triângulos equiláteros sobre os lados do triângulo ABC exteriormente (interiormente) e unimos o ápice de cada um com o vértice oposto. Para obter os pontos de Napoleão, Np1 e Np2, unimos os centros dos triângulos externos (internos) com os vértices opostos.



[A. A. F.]


Verifica-se que:
- as rectas W1Np1 e W2Np2 se intersectam no ortocentro H;
- as rectas W1Np2 e W2Np1 se intersectam no ponto médio do segmento definido pelo circuncentro O e pelo centro do círculo de nove pontos N.