- a primeira para lembrar que, para um dado segmento de reta AB, um dos seus pontos M (e um só) o divide em média e extrema razão, a saber, tal que AB/AM=AM/MB, (....Φ) ;
- a segunda a lembrar que, sendo M' o inverso de M relativamente à circunferência de centro em A e raio AB, as razões AB/AM e AM'/AB são iguais já que tomando AB para unidade, AM é o inverso de AM';
- e finalmente que se tomarmos B' como extremo oposto a B do diâmetro de (A, AB) - a meia volta de B em torno de A - temos um quaterno harmónico de pontos (sobre a reta AB), a saber (B', B; M, M').
Restauração:
Limitámo-nos a substituir essas três construções por uma só que se divide em 5 passos para evidenciar os aspectos essenciais acima referidos.