15.12.15

Dobras de um canto com uma dada área são um problema?


Imagine que o primeiro quadrante do plano $\;Oxy\;$ é um folha de papel gigante.Fixe uma constante $\;k\;$ e imagine que o canto em $\;(0,0)\;$ é dobrado para um ponto $\;P \;$ da folha de tal modo que o triângulo da dobragem tem área $\;k.\;$ Descreva o conjunto dos pontos que podem ocorrer como $\;P.\;$

Clique no botão a que chamámos "auxiliares"
Chamamos $\;Q\;$ e $\;R\;$ aos dois outros vértices do triângulo da dobragem que leva $\;O\;$ para $\;P\;$. E designamos por $\;S\;$ o ponto de interseção de $\;OP\;$ com $\;RQ\;$. Como os ângulos em $\;O\;$ e em $\;P\;$ são iguais e retos, $\;RQ\;$ é o diâmetro da circunferência que passa por $\;Q,\;P,\;R,\;O.\;$ $P$ obtém-se como imagem de $O$ por uma meia volta em torno de $\,QR,\;$ ou dito de outro modo, para cada $\;Q\;$ e cada $\;R\;$, há um $\;P\;$ imagem $\;O\;$ por simetria de eixo $\;QR.\;$ $\;OQ=QP, \;OS =SP, \; OR=RP.\;$





© geometrias, 8 dezembro 2015, Criado com GeoGebra


A área do triângulo $PQR$ é dada por $\; \displaystyle QR \times \frac{OP}{2}\;$ ou por $\; \displaystyle \frac{QP\times PR}{2}$.
Designemos por $\;(x, y)\;$ as coordenadas cartesianas de $\;P:\;\; x=OQ, \; y=OR\;$ e por $\;(\rho, \; \theta\;)\;$ as coordenadas polares de $\;P:\; \; \rho= OP =2\times SP, \; \theta=\angle Q\hat{O}P.\;$
No caso da nossa construção, atribuímos o valor $\;3\;$ a $\;k\;$ e a condição do problema que $\;P\;$ deve satisfazer é, pelo que vimos, $\;x\times y = 6.\;$
Como $\;OS \perp QR \;$, do triângulo $\;OSQ\;$ retângulo em $\;S\;$, tiramos $\;\displaystyle \frac{OS}{OQ} = {\rm cos}\; \theta \;$ ou $\; \displaystyle \frac{\rho}{2}=x.{\rm cos}\; \theta. \;$
Também o triângulo $\;RSO\;$ é retângulo em $\;S\;$ e $\;R\hat{O}S = \displaystyle {\pi \over 2} - \theta\;$ e $\; \displaystyle \frac{\rho}{2}=y.{\rm cos}\; ({\pi \over 2}-\theta)\;$ ou $ \displaystyle\frac{\rho}{2}=y.{\rm sen}\; \theta . \;$
De $\;\rho = 2x. {\rm cos} \theta\;$ e $\;\rho=2.{\rm sen} \theta\;$ podemos concluir que $\;\rho ^2 = 4xy.{\rm sen}(\theta).{\rm cos}\; \theta\;$ ou, por ser $\; 2{\rm sen}(\theta).{\rm cos}(\theta) ={\rm sen}(2\theta),\;$ e $\;xy=2k\;$ (no nosso caso $\;6\;$), podemos concluir que o lugar geométrico dos pontos $\;P (\rho, \; \theta)\;$ tais que os triângulos $\;QPR\;$ de dobragem têm área $\;k\;$ constante satisfazem a seguinte equação $$\rho ^2 = 4k. {\rm sen}(2\theta)$$ que é a equação de uma curva chamada lemniscata (meia lemniscata no nosso caso por serem $\;x\geq 0 \wedge y\geq 0 \;$ restrições consideradas no enunciado do problema.)

Pode ver o lugar geométrico -- meia lemniscata -- clicando no botão "lugar geométrico dos P" ao fundo direito na figura. E pode deslocar $\;Q\;$ para ver o ponto $\;P\;$ descrever a curva desenhada a vermelho. É claro que\, considerado que $\;P(x, y):\; xy=2k\;$ e deixando livre $\;Q(x, 0)\;$ o ponto $\;R (0, y)\;$ é dele dependente: $\;y=\displaystyle \frac{2k}{x}\;$


$^1\;$7. Don't Cut Corners — Fold them Suppose the first quadrant of the x-y plane is a giant sheet of paper. Fix a constant K and imagne that the corner at (0;0) is folded over onto a point P on the sheet in such a way that the triangle folded over has area k. Describe the set of ponts that can occur as P.
Konhauser, J.D.E; Velleman, Dan; Wagon, Stan. Which way did the bicycle go? . and other intriguing mathematical mysteries. Dolciani mathemetical Expositions - o 18, Mathematical Association of America: 1996.

28.11.15

Situar um triângulo dado de modo a que cada um de 3 pontos dados estejam sobre cada um dos seus lados.


ProbLema XXVI dos Principia

ProbLema XXVI dos PRINCIPIOS1 de I. Newton

Problema:
Conhecemos os os ângulos $\; \alpha, \; \beta, \; \gamma\;$ e o comprimento do lado $\;AB\;$ de um triângulo $\;ABC.\;$ Dados três pontos $\;D,\;E, \;F\;$ não colineares, situar o triângulo $\;ABC\;$ de tal modo que $\;D\;$ incida sobre a reta $\;BA\;$, $\;E\;$ sobre $\; AC\;$ e $\;F\;$ sobre $\; CB.\; \;^1\;$

$\fbox{n=1}\;$ Do triângulo $\;ABC\;$ que vamos construir, os dados estão lançados no topo esquerdo do janela de visuaização, a saber: comprimento $\;AB\;$ e os ângulos $\; \alpha, \; \beta, \; \gamma\;$, sendo igual a quatro retos a soma das amplitudes destes últimos — $\alpha + \beta + \gamma = 4 \;$ retos. Na nossa figura pode variar as amplitudes usando os pontos verde e vermelho. Claro que se pretende que este triângulo seja construído numa posição tal que em cada uma das suas três retas (lados) incida um dos pontos $\;D, \;E, \;F\;$ a azul na figura, onde também se apresentam os três segmentos que os unem dois a dois.
Para acompanhar os passos da construção, faz-se variar de 1 a 8 o valor de $\;n\;$ no cursor presente na janela da construção dinâmica.

Para que $\;D\;$ incida sobre $\;AB\;$ e $B\hat{A}C= \alpha = D\hat{A}E, \;$, basta que A seja um ponto do arco capaz de um ângulo de amplitude $\;\alpha\;$ oposto a uma corda $\;DE\;$ de uma circunferência a passar por $\;D, \;E.\;$ Pelas mesmas razões $\;B\;$ terá de estar no arco capaz de de um ângulo $\; D\hat{B}F = \beta \;$ de uma circunferência a passar por $\; D, \;F\;$ e $\;C\;$ terá de estar num arco capaz do ângulo $\;\gamma=F\hat{C}E\;$ numa circunferência a passar por $\;E, \;F.\;$






24 novembro 2015, Criado com GeoGebra
>Nota: Não pretendemos fazer demonstração, mas tão só os passos da construção<


$\fbox{n=2, 3, 4}\;$ Determinam-se os arcos $\;DAE, \;DBF, \;FCE \;$ capazes dos ângulos $\;\alpha, \;\beta, \;\gamma\;$ das circunferência de centros $\;P, \;Q, \; O\;$ que têm um ponto $\;G\;$ comum.

$\fbox{n=5}\;$ Para determinar $\;A\;$ sobre $\;(P, PG)\;$ colinear com $\;D\;$ da mesma circunferência e com $\;B\;$ da circunferência $\;(Q, QG)\;$, determina-se $\;GA\;$ tal que $$\frac{GA}{AB}=\frac{GP}{PQ}$$ da semelhança dos triângulo $\;GPQ\;$ e $\;GAB\;$ (por ser $\;G\hat{P}Q= G\hat{A}D, \; \;G\hat{Q}P= G\hat{B}D \;$)

$\fbox{n=6}\;$ Conhecido $\;GA\;$, determina-se $\;A\;$ sobre o arco $\;EGD\;$ de $\;(P, PG)\;$

$\fbox{n=7}\;$ As retas $\;DA\;$ e $\;EA\;$ definem dois ângulo de amplitude $\;\alpha \;$ verticalmente opostos e servirão definir o triângulo $\;ABC\;$ que procuramos:

$\fbox{n=8}\;$ $\;B\;$ estará sobre a reta $\;AD\;$ e sobre o arco $\;DGF\;$ de $\;(Q, QG)\;$ e capaz de ângulos de amplitude $\;\beta. \;$ Finalmente $\;C\;$ fica determinado como interseção da reta $\;EA\;$ com a reta $\;BF\;$ sobre o arco capaz $\;FCE\;$ de ângulos de amplitude $\;\gamma\;$.


$^1\;$Lemma XXVI. To place the three angles of a triangle, given both in kind and magnitude, in respect of as many right lines given by position, provided they are not all parallel among themselves in such manner that de several angles may touch the several lines.
Sir Isaac Newton, The Mathematical Principles of Natural Philosophy. (Andrew Motte) pp.91-92 Vol.I. London: 1803.