20.1.14

Construções e existência: o lugar geométrico como método?


Nas entradas anteriores, já referimos exemplos de axiomas, definições e postulados. Quando aceitamos os postulados, estamos a aceitar que para cada dois pontos distintos
  1. há uma linha reta que por eles passa;
  2. há uma circunferência centrada num deles e a passar pelo outro
Isto é o que fundamentalmente interessa, para o nosso estudo de geometria no plano (euclidiano). Usaremos estas aparentemente simples regras para realizar construções, sempre que construímos algum objeto que satisfaz a uma determinada condição, não só temos uma definição como temos assegurada a existência do definido ou que não é vazio o conjunto dos seres que nomeamos e atribuímos propriedades.
Depois de fixar as regras, o que fizemos foi determinar novos pontos ou figuras (conjunto de pontos) satisfazendo uma condição ou mais.
Determinámos uma circunferência de que conhecíamos o centro e cujo raio intervalo (raio) era dado por outros dois pontos. Para resolver essse problema, só precisámos de recorrer à definição de círculo e ao postulado da circunferência e concentrámo-nos em determinar um ponto de entre os pontos da figura procurada. Esse problema foi feito só com a circunferência postulada. Depois voltámos ao mesmo problema, com recurso à reta (régua) postulada e à circunferência (compasso) postulada.
Podemos resolver problemas só com circunferência, só com reta, com reta e circunferência. E sempre que encontrarmos um processo de resolução com reta e(ou) circunferência que prove a existência de uma figura relacionada com outra ficamos com uma ferramenta composta de vários passos construtivos com as primitivamente postuladas. E acrescentamo-las como ferramentas admissíveis (ou atalhos) ao nosso argumentário construtivo. Esta referência serve para lembrar que uma demonstração de existência ou construção deve poder ser reduzida a argumentos correntes (falados ou escritos) com base em axiomas, poucas regras simples, definições e cadeia de proposições (afirmações verdadeiras,....).
Claro que há muitos problemas que não se resolvem só com as postuladas reta e circunferência de dois pontos e isso, só quer dizer , que há figuras que podemos definir, mas de que não conseguimos provar a existência por construção recorrendo a ferramentas compostas a partir das inicialmente postuladas reta e circunferências por 2 pontos. Sabemos assim que há definições a que podem não corresponder construções com as regras admissíveis.... É bom termos uma imagem como prova do definido, é bom e preciso termos um discurso que substitua a imagem e é bom saber que há critérios para determinar o que pode ou não pode ser feito com as combinações das ferramentas postuladas por Euclides.
Nas próximas entradas vamos ocupar-nos de figuras planas construtíveis com as regras postuladas, isto é vamos resolver problemas de construção, muitos deles já abordados neste lugar por uma ou outra razão. Mas não seguimos as proposições (e suas demonstrações) nos "Elementos".
Varios autores sugerem com insistência uma abordagem autónoma do que habitualmente é nomeado por lugares geométricos como um método de construção e insistem na necessidade de conhecer um grande número de lugares geométricos - retas e círculos - construtíveis, a partir dos quais se podem determinar outros.
Os autores apresentam listas básicas distintas em número e, interessante também, com enunciados diferentes para os mesmos lugares geométricos.
As duas construções apresentadas nas entradas anteriores resolvem, de maneiras diferentes, o mesmo problema. Do mesmo modo, sabemos que a construção de um triângulo isósceles com base dada é a mesma da mediatriz de um segmento, da perpendicular a um segmento no seu ponto médio, do conjunto dos pontos que são equidistantes de dois pontos dados, ...

16.1.14

Com régua e compasso euclidianos, transferir distâncias

Proposição II - De um ponto dado tirar uma linha recta igual á outra recta dada , Euclides usa a sua régua não graduada e o seu compasso colapsante. Os passos dessa construção são ilustrados na construção que se segue:

© geometrias, 16 de Janeiro de 2014, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n.
  1. São dados três pontos O, A, B.
  2. Tomamos a circunferência de centro O a passar por A e a circunferência de centro A a passar por O que se cortam reciprocamente em D. Tirando as retas OA, OD e AD (Postulado I), a demonstração da proposição I, já feita, garante que OA=OD=AD e ADO é um triângulo equilátero
  3. Tomamos, em seguida as circunferências a passar por B centrada em A e a reta AD que, pelo postulado II, podemos prolongar até encontrar essa circunferência em E tal que AE=AB, pela Definição XV
  4. A circunferência de centro D a passar por E corta a reta OD (prolongada) em F tal que DF=DE, pela Definição XV.
  5. Como sabemos que são iguais as partes DO da reta DF e DA da reta DE , também são iguais as partes residuais OF de DF e AE de DE, para quem acredita no Axioma III. E, se de cousas eguaes se tirarem outras eguaes, os restos serão iguaes.
  6. Finalmente, como OF=AE e AE=AB, pelo Axioma I. As cousas, que são eguaes a uma terceira, são eguaes entre si. se conclui que OF=AB e por consequencia temos tirado do ponto O a linha recta OF egual a outra dada AB.
Tudo quanto é nova transcrição dos "Elementos" aparece em itálico com a grafia da versão latina de 1855 de Frederico Commandino, na Imprensa da Universidade de Coimbra disponibilizada "online" por Jaime Carvalho e Silva.