9.10.13

Determinar o lugar geométrico do segundo ponto de interseção das circunferências tangentes a duas, tangentes entre si, e que passam por um ponto do eixo radical destas duas circunferências dadas.




Levando em conta as duas últimas entradas, vamos determinar o lugar geométrico do segundo ponto de interseção das circunferências tangentes a duas, tangentes entre si, e que passam por um ponto do eixo radical destas duas circunferências dadas.
Na nossa construção, partimos de duas circunferências $(O)$ e $(P)$ tangentes em $T$. Tomamos o eixo radical (a negro) das duas circunferências que, neste caso, é a perpendicular a $OP$ tirada por $T$ que é a única reta tangente às duas circunferências no ponto $T$. E sobre o eixo radical, tomamos um ponto $M$ qualquer. E determinamos, como feito na entrada de 7 de Outubro as circunferências que passam por $M$ e são tangentes às circunferências $(O)$ e $(P)$ dadas.
Como se vê na figura abaixo, essas duas circunferências, determinadas com recurso à inversão $I(T, TM^2)$, em comum têm dois pontos, para além de $M$, $M'$, variando este quando $M$ se desloca sobre o eixo radical.
Vamos determinar o lugar geométrico dos pontos $M'$ quando $M$ percorre o eixo radical.



As duas circunferências que passam por $M$ e são tangentes às circunferências $(O)$ e $(P)$: uma delas (verde) é tangente a $(O)$ em $A$ e tangente a $P$ em $A'$; a outra (azul topázio) é tangente a $(O)$ em $B$ e a $(P)$ em $B'$. Referindo-nos aos resultados da entrada de 7 de Outubro p.p. sobre Inversão e Homotetia, sabemos que $AA'$ e $BB'$ passam pelo centro comum de homotetias várias definidas por pares de circunferências homotéticas tangentes duas a duas: uma (direta) que transforma $(O)$ em $(P)$ e outras, as que transformam $(P)$ na circunferência verde (tangente), ou $(O)$ na circunferência azul topázio (tangente)...
Como vimos então $A$ e $A'$ são tais que $$HA \times HA'= HT^2$$ Pela mesma razão, sendo $M'$ o segundo ponto de interseção de $HM$ com a circunferência verde (ou com a azul topázio), $M$ e $M'$ são tais que $$HM \times HM' = HT^2$$ Assim, uma circunferência que passe por $M$ e $M'$ e seja tangente a uma das $(O)$ ou $(P)$ é tangente à outra. $M'$ é o segundo ponto de interseção das circunferências que passam por $M$ e são tangentes a $(O)$ e a $(P)$.
E de $$HM \times HM' = HT^2$$ também se retira que, pela inversão $I(H, HT^2)$, aos pontos $M$ do eixo radical correspondem os pontos $M'$, ou seja, os pontos $M'$ encontram-se sobre a circunferência inversa do eixo radical das circunferências $(O)$ e $(P)$, que tem como diâmetro $TH$. $\hspace{1cm} \square$
Th. Caronnet, Éxercices de Géométrie, Vuibert. Paris:1947
Howard Eves, Fundamentals of Modern Elementary Geometry . Jones and Bartlett Pub. Boston:1992

7.10.13

Inversão e Homotetia.

Na entrada Conservação dos ângulos por inversão (2) ilustrámos e demonstrámos o seguinte resultado:
A inversa por $I(O,r^2)$ de uma circunferência que não passa por $O$ é uma circunferência homotética da original. O ângulo que a tangente num ponto qualquer $P$ desta circunferência faz com $OP$ é congruente com o ângulo que $OP$ faz com a tangente à inversa em $P'$ .
Dito de outro modo, as tangente em $P$ e em $P'$ são imagens uma da outra por reflexão de eixo perpendicular a $OP$ no ponto médio de $PP'$

No caso da construção que apresentamos a seguir, retomamos esse resultado partindo de duas circunferências tangentes num ponto $T$. Temos uma homotetia de centro $H$ que transforma a circunferência de centro $O$ na circunferência de centro $P$ e a circunferência com centro em $H$ e raio $HT$ define uma inversão que faz corresponder à circunferência de centro $P$ a circunferência de centro $O$.


A reta, tirada por H, que corta cada uma das circunferências em dois pontos, define pares de pontos $(D, A)$ e $(C, B)$ correspondentes pela homotetia e pares de pontos $(C, A)$ e $(D, B)$ correspondentes pela inversão $I(H, HT^2)$.
$$\frac{HA}{HD} = \frac{HB}{HC} = \; \mbox{razão da homotetia de centro $H$ da circunferência $(P)$ para $O$}$$ $$HA \times HC = HB \times HD = HT^2 = \;\mbox{potência da inversão}$$ para além de $$HC \times HD = HR^2 = \; \mbox{potência de $H$ relativamente à circunferência de centro em $P$}$$ A razão de homotetia que transforma a circunferêcnia de centro $P$ na circunferência de centro $O$ é afinal a razão das potências de inversão e do ponto H relativamente à circunferência de centro $P$, já que $$HC=\frac{HT^2}{HA} \wedge HC=\frac{HR^2}{HD}$$ e, em consequência, $$\frac{HT^2}{HA}=\frac{HR^2}{HD}$$ ou seja $$ \frac{HA}{HD}= \frac{HT^2}{HR^2} \hspace{1cm}\square$$
Os triângulos isósceles $BOA$ e $CPD$ são semelhantes, sendo $OB \parallel PC$ e $OA \parallel PD$.
$A$ e $C$ são inversos e correspondentes por reflexão relativamente á mediatriz de $AC$. Também $B$ e $D$ são inversos e correspondentes por reflexão relativamente á mediatriz de $BD$

Th. Caronnet, Éxercices de Géométrie, Vuibert. Paris:1947
Howard Eves, Fundamentals of Modern Elementary Geometry . Jones and Bartlett Pub. Boston:1992