23.3.12

Projetividade entre pontuais e feixes harmónicos.

Retomamos a figura da última entrada. Na construção abaixo, o feixe abcf de centro em S=a.b.c.f respeitando uma relação harmónica. Nesta construção, cada terno a,b,c determina univocamente a reta f. A, B, C, F constituem uma secção do feixe harmónico a,b,c,f, pela reta q, ao mesmo tempo que são os pontos da secção pela reta q do quadrilátero de vértices P,Q,R,S. A reta q passa por dois dos seus pontos diagonais A e B, sendo que C e F são pontos de interseção de q com os lados RS e PQ, respetivamente.
Este processo garante que o feixe harmónico abcf pode ser obtido a partir de qualquer conjunto harmónico de pontos e um ponto S em que não incida a reta do conjunto harmónica.
Assim, fica estabelecido que
Um conjunto harmónico de pontos é projetivo com um feixe harmónico de retas de centro fora da base do conjunto harmónica
e, dualmente,
Qualquer secção de um feixe harmónico por uma reta que não passe pelo seu centro é um conjunto harmónico de pontos.

22.3.12

Relações harmónicas - duais.

Introduzimos a relação harmónica H(AB,CF) com recurso a um quadrilátero completo PQRS, para a qual os pontos A, B, C determinam univocamente F. Trata-se agora de dualizar esse trabalho que concluirá por uma relação para a qual três retas a, b, c determinam univocamente uma quarta reta f.
H(AB, CF):
Estabelecer essa relação harmónica é o mesmo que criar o conjunto harmónico (AA,BB,CF) como secção (pontual) de um quadrilátero completo PQRS pela reta AB, considerados estes últimos como pontos diagonais do quadrilátero a construir.
Fez-se assim: Tomámos a reta dos três pontos A, B, C colineares e um ponto R (livre) fora dessa reta. E traçamos os lados do triângulo ABR. Seguidamente, por A, tirámos uma segunda reta que corta BR em P e CR em S. A reta que passa por B e S determina Q sobre AR. Falta o lado QP que cortará ABC em F, conjugado harmónico de C; C é único para cada terno ABC, independente do quadrilátero PQRS; poderá verificar ao fazer variar o quadrilátero (deslocando R) de que construímos os lados e em que A e B são dois dos seus 3 pontos diagonais e C está sobre AB e o lado RS. C é o conjugado harmónico de F pela relação estabelecida.
H(ab,cf):
Tomamos agora três retas distintas a,b,c que incidem num mesmo ponto que designamos por a.b.c. E vamos construir um quadrilátero de lados p,q,r,s, começando pelo triângulo qrs cujos vértices q.r, q.s, r.s incidam respetivamente em a,b,c. O lado p é o que passa por a.s e b.r, p=(a.s)(b.r). O lado p interseta q e tomamos a reta f=(a.b)(p.q)
Assim, o quadrilátero de lados p,q,r,s tem a e b como duas das suas 3 diagonais enquanto c passa por dois vértices.
Poderá verificar que f é única para cada terno (a,b,c) independente do quadrilátero de lados p,q,r,s, como pode verificar quando desloca esses lados mantendo a incidência das suas interseções em a,b,c fixas.Por exemplo, pode deslocar os pontos a.r sobre a reta a, b.q sobre a reta b ou c.r sobre a reta c. Podemos dizer que a reta f assim determinada é conjugada harmónica da reta c numa relação harmónica que designamos talvez abusivamente por H(ab,cf).

Se,na figura da direita, chamarmos A=a.q=a.r, B=b.q=b.s=q.s, C=c.q e F=f.q=p.q=f.p, é óbvio concluir que (AA,BB,CF) é um conjunto harmónico ou que H(AB,CF). Basta identificar as linhas ligadas ao quadrilátero de lados p,q,r,s e retas diagonais a,b,c com as linhas PQ, AB,QR, RP,PS, QS, RS para ver como ABCF, sendo uma secção do conjunto harmónico abcf é uma secção pontual harmónica do quadrilátero de vértices PQRS, agora nomeado.