14.2.12

Projetividade entre quaisquer dois feixes

Será que entre dois feixes a,b,c por R e d,e,f por S (quaisquer) se pode estabelecer uma correspondência biunívoca que seja uma projetividade?
Pode. Tomemos uma reta que corte a,b,c em A,B,C e outra que corte d,e,f em D,E,F. Usando o processo da anterior entrada (a castanho na figura), determina-se a projetividade entre as pontuais A,B,C e D,E,F como composta de duas perspetividades.

Temos
abc→ABC →    DEF →de f

Para cada reta x do feixe por R, há uma só reta do feixe por S que é projetiva com x (para a projetividade construída). Na edição inicial ficava como exercício a sua determinação usando as ferramentas disponíveis pelo CaR e o computador reconhecia a solução. Nesta,em GeoGebra, apresentamos os passos da construção até à solução.



Fica assim provado que há uma projetividade que transforma o feixe abc noutro def. Ficará por provar que é única.
Será que há sempre uma projectividade entre dois feixes de 4 retas?

13.2.12

Projectividade entre quaisquer duas pontuais?

Será que entre duas pontuais A,B,C de r e D,E,F de s (quaisquer) se pode estabelecer uma correspondência biunívoca que seja uma projectividade?
Pode. Tomemos os feixes de retas AD, AE e AF (por A) e DA, DB e DC (por D) e a reta GH (=o) em que G=AE∩DB e H=AF∩DC. E tomemos I=AD∩GH. Ficam assim construidas duas perspectividades: uma que transforma a pontual A,B,C de r a pontual I,G,H de o (secções por r e o do feixe de retas incidentes em D) e outra que transforma a pontual I,G,H de o na pontual D,E,F de s (secções por o e s do feixe de retas incidentes em A).
A o chamamos eixo da projectividade que transforma a pontual A,B,C de r na pontual D,E,F de s. Escrevemos
ABC → IGH → DEF

Para cada ponto X de r, o correspondente em s, pela projetividade assim definida, será o ponto X'' de incidência comum a AX' e s, em que X' é o ponto de incidência comuma a DX e o.

Fica assim provado que há sempre uma projectividade que transforma uma pontual ABC noutra DEF (determinada como composta de duas perspectividades). Ficará por provar que é única. Para isso, bastará verificar que qualquer sequência de perspectividades relacionando ABC com DEF terá sempre o mesmo efeito sobre X.
Será que há sempre uma projectividade entre duas pontuais de 4 pontos?