Partimos de um elemento figurativo que, por uma translação associada a vetores u e -u, decora uma fita com infinitas pequenas figuras todas iguais (seguindo uma mesma direção e um mesmo sentido) tal como se mostrou na
primeira ilustração de friso. Neste novo friso, acontece que a cada uma das figuras corresponde uma outra obtida por rotação
r de 180 graus (meia volta) em torno de um ponto sobre uma recta com a direção de u. É óbvio que assim o conjunto das duas filas horizontais de figuras pode ser obtido por translação a partir de um par de figuras de que um dos seus elementos se obtém por meia volta sobre o outro. Note-se que, qualquer centro da meia volta é transformado noutro pela translação e, em consequência, em relação a cada centro, uma figura elementar do friso superior tem por imagem a figura do friso inferior equidistante desse centro.
Para ver o vetor u da translação associada, clique no botão 'translação' e para verificar a simetria de translação, desloque o ponto que aparece de novo, na origem do vetor. Para não complicar a figura, volte ao princípio (botão automático da construção, em cima à direita) e, clicando no botão 'meia volta?', desloque o ponto verde no sentido contrário ao dos ponteiros do relógio para ver a simetria por meia volta. Para além das simetrias de translação, pode acontecer a simetria de meia volta num friso.... O conjunto das simetrias deste friso é, portanto, {t
n|n∈Ζ}∪{t
n.r|n∈Ζ}
Se quiser ver os conjuntos de pontos que são centros das várias meias voltas, clique no botão 'listas'.
Na anterior entrada (primeira de friso), o grupo de simetria é gerado por uma só translação. A transformação geométrica translação é elemento comum a todos estes grupos de simetrias - frisos- em que há rectas paralelas ao vector associado à translação pela qual são imagens de si próprias, sem que qualquer ponto se mantenha invariante. Nesta entrada, consideramos as rotações de 180 graus (e obviamente de 360 graus e outros múltiplos de 180). Num friso, não podemos considerar rotações de amplitudes diferentes daquelas. Mas podemos considerar reflexões em eixos horizontais (paralelos ao vector da translação) e relativamente a eixos verticais (perpendiculares à direcção das repetições). A composta ou produto de reflexões de eixos paralelos é uma translação - um objecto colocado entre dois espelhos paralelos cria uma vista de friso de imagens todas iguais a esse objecto. Lembramos que o produto de duas reflexões de eixos concorrentes é uma rotação....
Nas classificações de frisos, para além da letra p (inicial, de periódico) que aparece nas classificações de todos os frisos, pode aparecer em segunda posição m (mirror: espelho) se houver reflexão vertical (ou 1, nessa posição se não houver reflexão vertical); m em 3ª posição se houver reflexão horizontal ou a (de alternate) se houver reflexão deslizante (ou 1, em caso de não haver), 2 em 4ª posição caso haja meia volta (ou 1, caso não haja meia volta).
De acordo com estas notações, o primeiro friso (da entrada anterior) é p111, e o desta entrada é p112.