21.7.10

Circunferências e Tangentes

Dadas duas circunferências quaisquer de centros A e B. A recta AB intersecta as circunferência em quatro pontos. Tomemos os dois A' e B', mais distanciados. Tirem-se por A' tangentes à circunferência de centro B e por B' tangentes à circunferência de centro A.
As circunferências inscritas nos triângulos curvilíneos são congruentes.





(Paul Yiu, claro!)

13.7.10

A partir de um triângulo, outros. E outras qualidades.

Nestes tempos, dedicamo-nos a olhar para o texto Introdução à Geometria do Triângulo, de Paul Yiu e, sempre que possível mostrar construções dinâmicas que ilustrem resultados que nos pedem divulgação. Um enunciado simples:

Tome-se um triângulo ABC e um ponto P qualquer. Depois tirem-se por P perpendiculares a PA,PB e PC. Estas perpendiculares intersectam as rectas BC, AC e AB em A', B' e C', respectivamente.
  1. A', B' e C' são colineares
  2. E são colineares os centros das circunferências de nove pontos dos triângulos rectângulos PAA', PBB' e PCC'
  3. Essas circunferências têm obviamente um ponto comum - P que é o pé de alturas de todos os triângulos rectângulos. Menos esperado é haver um outro ponto P* comum às três circunferências.




É sempre um espanto. Coisa pouca, uma nota de uma viagem de estudo ao mundo dos triângulos.