4.7.10

Triângulos com circuncentro na circunferência inscrita?

Uma das perguntas de Paul Yu, em "Introduction to the Geometryof the Triangle" (Florida Atlantic University: 2001) que fizémos a nós mesmos (AAF, AM & MIS), numa destas quintas geométricas era qualquer coisa como: Quais são os triângulos que têm o circuncentro na circunferência inscrita?. Na altura, respondemos com os cálculos mais óbvios, uma construção (em geogebra) e os espantos do costume. E deixámos para mais tarde essa e mais duas outras respostas (as construções já foram feitas ou meio desfeitas-AF (ou meias-desfeitas?:-))
Hoje, passados uns dias, recebemos de manhã o estudo de MS (construções em CaRmetal*.zir) que não resistimos a publicar como prenda de domingo. Muito cuidadosamente, ela escreve muito mais que uma resposta à pergunta. Assim:
  1. Porisma - difícil de definir- mas que contem de certa forma o conceito de corolário
  2. Porisma - de uma maneira simples mas perceptível - é uma situação que ou não tem soluções ou tem uma infinidade de soluções
  3. Porisma de Poncelet - Sejam dois círculos C1 e C2, C2 interior a C1. Por um ponto P de C1 tire-se uma tangente a C2 que intersecta C1 noutro ponto a partir do qual se tira nova tangente a C1 e assim sucessivamente. Forma-se assim uma linha poligonal.

    Se essa linha poligonal fechar, fechará (com a mesma dimensão) qualquer que seja o ponto P de partida de C1. Se não fechar, não fechará para nenhum ponto de C1
  4. Polígonos que se formam nestas condições chamam -se polígonos bicentricos(têm incentro e circuncentro)
  5. Todo o triângulo é bicentrico
  6. Voltemos ao porisma de Poncelet para o caso em que a linha poligonal fecha e tem dimensão 3 - triângulos. Existe assim uma infinidade de triângulos com o mesmo circuncentro e incentro e que se chamam triângulos poristicos - Entrada no blogue em 7.05.09 (ex. interactivo)
  7. Que condições se têm que verificar para haver uma infinidade de soluções - a relação de Euler - OI2= R(R-2r) ou OI é a média geométrica entre R e R-2r
  8. Caso o circuncentro (O) esteja sobre o incírculo:
    1. R=r(1+√t2)
    2. O lugar geométrico dos ortocentros (H) dos triângulos poristas (nesta condição) é uma circumferência com centro sobre OI , tangente ao circuncírculo e de raio R-2r

25.6.10

A borboleta

Tomem-se A,B,C e D sobre uma circunferência de centro O e de tal modo que AC intersecte BD num ponto P. A perpendicular a OP tirada por P intersecta BC e AD em M e N, respectivamente.
Porque é que |MP|=|NP|?




Nota: Claro que pode deslocar A, B, C e D sobre cada circunferência e pode deslocar O fazendo variar a circunferência.