25.11.09

Composta de uma translação com uma rotação

Em entradas anteriores, resolvemos problemas que as transformações geométricas ajudam a resolver e vimos alguns resultados sobre compostas de translações, rotações, reflexões. Particularmente, vimos que a composta de duas translações é uma translação, que a composta de duas rotações é uma rotação, enquanto que a composta de duas reflexões não é uma reflexão mas pode ser uma rotação ou uma translação. Pode ser interessante ver o que é a composta de uma translação com uma rotação. E tem especial importância ver o que pode ser a composta de uma translação com uma reflexão. Como será a composta de uma rotação com uma reflexão? Como será a composta de três reflexões? Lá iremos.

Comecemos pela composta de uma translação do plano (que transforma A em A', ...) com uma rotação do plano (que transforma A' em A'', ...). Sabemos que há uma rotação do plano que transforma A em A'', B em B'' e C em C''. O exercício que pode fazer é encontrar o centro dessa rotação e o respectivo ângulo de rotação. Pode veriicar a sua resolução, desocultando a nossa solução.



22.11.09

Problema usando translações e reflexões

Dadas duas rectas a e b, determinar a circunferência de raio dado que é tangente às duas rectas dadas.

Na construção dinâmica que se segue, pode fazer variar as rectas. Para cada raio (da circunferência visível a castanho), pode estabelecer uma conjectura, deslocando T sobre a e a circunferência de raio dado. Pode determinar a solução usando as ferramentas disponíveis. E pode depois verificar se encontrou a solução, comparando com aquela que é apresentada.





Há mais do que uma maneira de resolver o problema. No caso, seguimos uma sugestão de translação (deslocamento de um segmento perpendicular a a e de comprimento igual ao raio, já que se a é tangente à circunferência c a é perpendicular ao raio de extremo no ponto de tangência). E há uma reflexão do plano que faz corresponder a cada ponto da recta a um só ponto da recta b.
De outro modo:
Podíamos partir da constatação de que a figura do plano constituída por duas rectas quaisquer admite um eixo de simetria e desenhar a circunferência de raio dado, para depois realizar o deslocamento por translação(?) do centro arbitrário sobre a bissectriz ...