18.11.09

Problema usando translações

Há um problema clássico de mínimos que aparece sugerido de novo por Paulo Ventura Araújo no seu Curso de Geometria (já referido neste lugar mais do que uma vez) com a indicação de que usa translações [T]. É verdade, mas, de um modo geral, nem se pensa nisso quando estamos a trabalhar com paralelogramos.

O problema do nó da auto-estrada que é o do primeiro problema (usando reflexões) de calcular a distância mais curta entre duas cidades, passando por um ponto de um recta, pode ser retomado com a localização de uma ponte numa dada direcção de tal modo que seja mínimo o percurso entre duas cidades de lados opostos do rio.

Sejam dados dois pontos A e B e duas rectas paralelas a e b cortadas por uma recta r. Determinar P sobre a e Q sobre b, de tal modo que PQ seja paralela a r e AP+PQ+QB seja mínima.


Pode mudar as rectas a, b e r, bem como os pontos A e B.

Para cada situação, pode conjecturar quais são os pontos P e Q da distância mínima e pode, desocultando a solução, verificar se acertou. Pode justificar de forma muito simples porque é aquela a solução e tentar reconstruí-la.



17.11.09

Segundo problema usando reflexões - 3

Na entrada Problemas usando reflexão enunciava-se o seguinte problema:

Dados dois pontos A e B, diferentes, situados entre duas rectas r e s. Qual o caminho mais curto, passando por cada uma das rectas r e s, e ligando A a B?

Na construção dinâmica que se segue, para além da possibilidade de conjecturar, pode ver a solução




Ao tomar as imagens A'r e B's por reflexões de A relativamente a r e de B relativamente a s, ficamos com o segmento de recta A'r B's.

'r B's=AR+RS+SB mínimo, porque A'rR=AR e B'sS=BS.