20.8.07

Ortogonalidade, potência, pólo e polar

Conversa puxa conversa, passámos da inversão para a perpendicularidade de duas cirunferências. E, no mesmo passo, ligámos a ortogonalidade de duas circunferências à potência de uma circunferência num ponto:



A construção ilustra bem que a potência da circunferência verde (de centro O e raio |OA|ou |OT|) no centro da circunferência azul (de centro P e raio |PT|)
|OP|2 - |OA|2

é o quadrado do raio da circunferência azul |PT|2.

E é claro que, por serem ortogonais as circunferências, ao pólo O relativamente à circunferência azul de centro P corresponde a mesma recta polar que ao pólo P relativamente à circunferência verde de centro O. Na condição de serem ortogonais as circunferências, a polar de P relativamente à circunferência verde é perpendicular a OP (à recta que passa pelos centros, eixo das abcissas) no ponto que é transformado de P pela inversão relativamente à circunferência verde (inverso de P quando tomamos para unidade o raio da circunferência verde ou com abcissa inversa de P se tomarmos para origem O e para unidade o raio verde)... Do mesmo modo, a polar de O.....

Não podemos saber se este tipo de ligações entre diversos assuntos (conceitos) pode ser abordado facilmente no ensino básico (ou mesmo no secundário), mas parece-nos óbvio que é do maior interesse que, sempre que possível, aos jovens estudantes, deve ser dado o cheiro da síntese, da unidade.... Aos professores cabe escolher as melhores oportunidades e não desperdiçar um único momento propício a reforçar o especial espírito do lugar que a matemática é....

19.8.07

Perpendicularidades e inversões


A construção acima (com a qual pode interagir) ilustra bem que,
  • se tomarmos para unidade o raio da circunferência verde (|OT|=1), |OA| -1=|OP|,
    ou, o que é o mesmo, A é o transformado de P pela inversão associada à circunferência verde;

  • se tomarmos para unidade o raio da circunferência azul (|PT|=1). |PA| -1 =|OP|,
    ou, o que é o mesmo, A é o transformado de O pela inversão associada à circunferência azul.

As rectas OT e PT são perpendiculares (OT é tangente à circunferência azul e PT é tangente à circunferência verde em T). Do mesmo modo, OS e PS são perpendiculares.

Dizemos que duas circunferências se intersectam perpendicularmente quando os raios tirados para um ponto de intersecção são perpendiculares, que é o mesmo que dizer quando eles são catetos de um triângulo rectângulo cuja hipotenusa é o segmento que une os seus centros.
Designando por r1 e r2 os raios das circunferências, (|OT|= r1 e |PT|=r2), r12 + r22 = |OP| 2
r12 = |OP| 2 - r22
r22 = |OP| 2 - r12


E isto é para ser lido: duas circunferências são ortogonais (perpendiculares), quando a potência de qualquer delas no centro da outra é o quadrado do raio da outra.