Transcrevemos em parte uma mensagem de Paulo Correia, professor de Matemática em Alcácer do Sal e responsável da página Matemática? Absolutamente!, que recomendamos. A sua proposta de construção (construção maravilhosa e que não conhecíamos) confunde-se (nos fundamentos) com a proposta de J. Vieira publicada.
Ora viva...
Sou um leitor atento do blog, para o qual ñão tinha ainda contribuido por falta de pertinência.
Sobre a construção de um pentágono, dado o lado, imaginei uma construção que não encontrei no vosso blog (nem na internet) e que julgo que possa trazer valor acrescentado, razão pela qual a decidi enviar
(...)
A ideia principal, é a de que num pentagrama inscrito no pentágono, os segmentos do pentagrama estão para os lados do pentágono na proporção de ouro (phi). Assim:
1º - sobre o lado dado, contrói-se um rectângulo de ouro
2º - do rectângulo, cria-se um triângulo de ouro - intersectando as circuferências de centro nos extremos do segmento dado e raio igual ao lado maior do rectângulo.
3º - Já está... o ponto encontrado é o 3º vértice do pentágono.
4º - Com a intersecção de umas circunferências encontram-se os dois vértices em falta.
Espero que aprecie a ideia - eu achei-lhe uma certa piada. Aguardo o seu comentário.
(...)
Obrigado Paulo.