A transformação a vermelho que leva A para A'' , B para B'' e C para C'', é composta de uma reflexão relativamente a b que leva A para A'1, B para B'1 e C para C'1 com a translação que leva A'1 para A'', etc sendo A'1A'' paralela a b. As transformações assim definidas tomam o nome natural de reflexões deslizantes. Assim, podemos resumir os deslocamentos do plano que deixam invariantes os comprimentos (as distâncias), ao conjunto formado por todas as translações, rotações, reflexões e reflexões deslizantes. Este conjutno é fechado para a operação produto ou composição e é um grupo (fechado para o produto, associativo, com elemento neutro - identidade, e em que para cada transformação há uma outra que a neutraliza). Pelos exemplos apresentados também ficámos a saber que a composição é comutativa ou que este grupo das transformações geométricas do plano é abeliano.
Mostrar mensagens com a etiqueta transformações geometricas.composta. relfexão deslizante.. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta transformações geometricas.composta. relfexão deslizante.. Mostrar todas as mensagens
29.11.09
A reflexão deslizante
Uma composta de uma rotação com reflexão pode ser substituída por uma composta de translação com reflexão. Agora, com a construção que se segue, só nos interessa mostrar como a composta de qualquer translação com qualquer reflexão pode sempre ser substituída pela composta de uma reflexão com uma translação tais que o eixo da reflexão tem a mesma direcção do vector da translação. Pode verificar, desocultando a solução que apresentamos.
A transformação a vermelho que leva A para A'' , B para B'' e C para C'', é composta de uma reflexão relativamente a b que leva A para A'1, B para B'1 e C para C'1 com a translação que leva A'1 para A'', etc sendo A'1A'' paralela a b. As transformações assim definidas tomam o nome natural de reflexões deslizantes. Assim, podemos resumir os deslocamentos do plano que deixam invariantes os comprimentos (as distâncias), ao conjunto formado por todas as translações, rotações, reflexões e reflexões deslizantes. Este conjutno é fechado para a operação produto ou composição e é um grupo (fechado para o produto, associativo, com elemento neutro - identidade, e em que para cada transformação há uma outra que a neutraliza). Pelos exemplos apresentados também ficámos a saber que a composição é comutativa ou que este grupo das transformações geométricas do plano é abeliano.
A transformação a vermelho que leva A para A'' , B para B'' e C para C'', é composta de uma reflexão relativamente a b que leva A para A'1, B para B'1 e C para C'1 com a translação que leva A'1 para A'', etc sendo A'1A'' paralela a b. As transformações assim definidas tomam o nome natural de reflexões deslizantes. Assim, podemos resumir os deslocamentos do plano que deixam invariantes os comprimentos (as distâncias), ao conjunto formado por todas as translações, rotações, reflexões e reflexões deslizantes. Este conjutno é fechado para a operação produto ou composição e é um grupo (fechado para o produto, associativo, com elemento neutro - identidade, e em que para cada transformação há uma outra que a neutraliza). Pelos exemplos apresentados também ficámos a saber que a composição é comutativa ou que este grupo das transformações geométricas do plano é abeliano.
Subscrever:
Mensagens (Atom)