“A geometria possui dois grandes tesouros: um é o teorema de Pitágoras; o outro, a divisão de uma linha em extrema e média razão.” (KEPLER)
Supõe-se que o conceito de média e extrema razão se deve à escola pitagórica como resultado do seu afã de descobrir relações numéricas que exprimissem as harmonias da natureza. Foi através dos Elementos de Euclides que o conceito chegou aos nossos dias.
Dado o segmento AB, pretende-se dividi-lo em “duas partes desiguais tal que a parte menor e a maior estejam na mesma razão que entre a maior e o todo."
Foi aproximadamente nestes termos que Euclides, há 2300 anos, pôs o problema no Livro VI dos seus Elementos.
Por outras palavras: para dividir um segmento na razão média e extrema, a razão existente entre o comprimento do segmento inteiro e o de sua maior divisão (razão extrema) é igual à razão entre o comprimento desta maior divisão e o da menor (razão média)
Dado um segmento AB, trata-se de determinar um ponto M do segmento tal que o segmento AM seja o meio proporcional entre o segmento AB e o segmento MB. Ou seja, pretende-se determinar o ponto M para o qual são iguais as razões AB/AM e AM/MB.
Ao fundo da janela de visualização da construção que apresentamos, temos um cursor n=0 com n variável entre 0 e 3 que permitem separar os passos do nosso trabalho
|n=0|: Apresenta-se inicialmente um segmento AB
O segmento AB tem comprimento constante; para facilitar, tomemos AB = 1.
|n=1|: Determinámos um ponto M de AB (pelo método já apresentado antes)
|n=2|: Verifica-se que existe um ponto M que divide AB em duas partes AM e MB tais que
AB/AM=AM/MB ou AM2=ABxMB.
Sendo AB=1, o comprimento de AM varia entre 0 e 1; logo a razão AB/AM varia de +∞ a 1, enquanto a razão AM/MB varia de 0 a +infinito.
|n=3|: Há uma e uma só posição de M para a qual as duas razões são iguais: AB/AM = AM/MB:
A figura neste passo, apresenta um ponto N de AB variável. Deslocar esse ponto N do segmento AB permite verificar que existe de facto apenas uma posição em que se igualam as duas razões e é quando N coincide com M.