Interessante é perceber como se determina o centro R da rotação (produto das rotações de centros O e P) que leva A directamente para A'', bem como compreender o que se passa com a determinação do ângulo dessa rotação.
Mostrar mensagens com a etiqueta Rotações do plano. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Rotações do plano. Mostrar todas as mensagens
8.11.09
Grupo das rotações do plano
Tal como acontece com as translações, também o conjunto das rotações do plano munido da composição (ou produto) é um grupo. O quadro dinâmico que se segue, permite ver uma rotação de centro O e ângulo de 50º a levar A (e um polígono) para A' (no sentido horário, 310º no sentido anti-horário), e uma outra rotação de centro P e ângulo 200º no sentido horário (160º no sentido anti-horário) a levar A' para A''. Pode ver isso clicando na barra de navegação dos passos da construção.
Interessante é perceber como se determina o centro R da rotação (produto das rotações de centros O e P) que leva A directamente para A'', bem como compreender o que se passa com a determinação do ângulo dessa rotação.
Interessante é perceber como se determina o centro R da rotação (produto das rotações de centros O e P) que leva A directamente para A'', bem como compreender o que se passa com a determinação do ângulo dessa rotação.
Subscrever:
Mensagens (Atom)