Caso particular do problema de Apolónio
Determinar uma circunferência tangente a três dadas circunferências concorrentes mas não co-axiais. (usando a Inversão)
Na construção partimos das circunferências (Ci), de centro Ci, que se intersetam num só ponto O. Se tormarmos uma circunferência (O) de raio qualquer para circunferência de inversão, como as circunferências (Ci) passam pelo centro de inversão O, as suas inversas (Ci)' são retas, precisamente as retas definidas pelas interseções de cada (Ci) com (O). A cirucnferência (I) inscrita no trilátero (C1)', (C2)', (Ci)' é tangente a essas retas e, por isso, usando a mesma inversão de centro O, obtemos uma corrrespondente (I)', circunferência que é tangente às três (Ci).
Claro que há mais 3 soluções, já que para além da inscrita (I), há 3 ex-inscritas tangentes às (Ci)' que se invertem em 3 circunferências cada uma delas tangente às 3 (Ci) dadas.
© geometrias, 2 de Novembro 2013, Criado com GeoGebra