Mostrar mensagens com a etiqueta Earl Perry. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Earl Perry. Mostrar todas as mensagens

15.11.18

Epicicloide


Nesta entrada, ilustraremos o caso da trajectória de um ponto fixo relativamente a uma circunferência exteriormente tangente a outra sobre a qual a primeira rola sem arrastamento, tal como na entrada anterior. Neste caso, a circunferência carril terá raio duplo do raio da circunferência ou roda que rola sempre à tangente. Já foi referido antes que rolamento sem arrastamento de uma circunferência $\;(C,\;s)\;$ tangente a uma circunferência $\;(A,\;r)\;$ exige que, para um dado valor de ângulo $\;\alpha \;$ de rotação de $\;(C, \;s)\;$ em torno de $\;A,\;$ o comprimento do arco de $\;(A,\; r)\; $ - $\;r\times \alpha -\;$ correspondente ao ângulo ao seu centro de amplitude $\;\alpha, \;$ entre dois dos seus pontos (de tangência) terá de ser igual em comprimento ao arco de $\;(C,\;s)\;$ - $\;s\times \beta -\;$ correspondente ao seu ângulo ao centro de amplitude $\;\beta \;$ entre o primeiro ponto de tangência de partida e o correspondente à sua rotação em torno de $\;C\;$ da outra em torno de $\;A.\;$ Resumindo:
Rolamento sem deslizamento de uma circunferência de raio s tangencial exteriormente a uma circunferência de raio r exige que $\;s\beta = r\alpha, \;$ ou seja, $\; \beta = \frac{r}{s} \alpha .\;$

No caso de $\;r=2s\;$ o comprimento percorrido por um ponto $\;B\;$ quando roda em torno de $\;C\;$ tem de ser feito duas vezes para percorrer o correspondente comprimento quando roda em torno de $\;A\;$ de um ângulo $\;\alpha\;$ que tem comprimento duplo do comprimento percorrido entre os dois pontos de tangência em $\;(A,\;r).\;$ Na figura que se segue, os raios têm comprimentos $\;r=3, \; s=1,5\;$



Como esperávamos, $\; T' = Rot(T,2\alpha, C) \;$ parte de B e volta a B ao fim de uma volta completa de $\;T \in [0, \;2\pi]\;$ em torno de $\;A\;$ que corresponde a rotação de duas voltas $\;T'\;$ em torno de $\;C'\;$ (ou duas voltas de $\;B'\;$ em torno de $\;C.\;$) Também fica claro que $\;T'\;$ toca $\;(A, \;3)\;$ noutra posição para além de $\;B\;$ correspondente a $\; \alpha = \pi = \displaystyle \frac{1,5}{3}\times 2\pi \; $ - o que nos esclarece porque temos duas pétalas completas.....