A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

30.10.09

A geometria métrica e os movimentos

As Geometrias. Lucien Godeaux. (trad de Silva Paulo) Col Saber. Pub Europa América. Lisboa:1960

Em geometria elementar, para demonstrar que duas figuras são iguais mostra-se que se podem sobrepor. Assim, para demonstrar que dois triângulos [ABC] e [A'B'C'] são iguais, mostra-se que se pode colocar, respectivamente A', B' C' sobre A, B, C, de modo que os triângulos coincidem. Limitemo-nos à geometria plana e vejamos como, sem sair do plano, podemos levar dois triângulos [ABC], [A'B'C'] a coincidir. Deixemos o triângulo [ABC] fixo e submetamos o triângulo [A'B'C'] aos deslocamentos seguintes:

  1. Levemos A' para A fazendo deslizar [A'B'C'] no plano, conservando os lados paralelos a si mesmos. O triângulo [A'B'C'] ocupará no fim do deslocamento uma posição [AB''C''] tal que AB'' é paralelo a A'B' e B''C'' é paralelo a B'C'

  2. Façamos rodar [AB''C''] em torno de A de modo a levar B'' para B. No fim do deslocamento, o ponto C'' coincidirá com C ou será o simétrico C''' de C em relação a AB.















  3. Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


    Os pontos azuis permitem mover os triângulos, nas transformações que se podem mostrar podemos ver os deslocamentos e sobreposições arrastando os pontos verdes
  4. Nesta última eventualidade, tomemos o simétrico de [ABC''] em relação à recta AB.

  5. Na pequena construção dinâmica que se segue, deslocando o ponto (verde) C' verá que roda A'B'C' em torno de A' e, em consequência AB''C'' em torno de A. Se levar C'' a coincidir com C verá que ainda precisaria de uma reflexão em relação a AC para que AB''C'' se sobreponha a ABC. Se levar B'' a coincidir com B, precisará de uma reflexão em relação a AB. Claro que pode ver tudo isto utilizando a primeira construção. Que precisa de fazer ao triângulo ABC da construção anterior para precisar da reflexão?














    Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)



Para levar [A'B'C'] a coincidir com [ABC], efectuamos então uma translação, uma rotação em torno de um ponto e, por fim, eventualmente uma reflexão em relação a uma recta. E, como pudemos ver já, é evidente que a ordem pela qual se efectuam estes deslocamentos é indiferente.

Pode-se verificar, mais geralmente, que duas figuras de um plano são iguais quando se pode, por meio de translações, rotações e reflexões em relação a uma recta, fazê-las coincidir.

A geometria métrica do plano é o conjunto das propriedades das figuras que não são alteradas quando estas últimas se submetem a translações,a rotações em torno de um ponto e reflexões em relação a uma recta....

Etiquetas:

26.10.09

GMbMc: Solução

Para determinar os vértices do triângulo ABC de que são dados os pontos G, Mb e Mc, procedemos da forma seguinte:

  1. B encontra-se sobre a recta GMb e considerando que GB=2GMb,

  2. C encontra-se sobre a recta GMc, sendo GC=2GMc,

  3. A encontra-se como intersecção das rectas BMc e CMb.


Na construção dinâmica abaixo, pode seguir a construção passo a passo.















Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

23.10.09

AGMb: Solução

Para determinar os vértices B e C de um triângulo de que se conhecem o vértice A, o ponto médio Mb de AC e o baricentro G, procedemos como se segue:
C é obtido como extremo do diâmetro da circunferência centrada em Mb e a passar por A.
B é obtido sobre a recta GMb e de tal modo que BG = 2GMb. Na construção dinâmica que se segue, pode reproduzir os passos da construção clicando sobre a tecla de reprodução visível na barra que encima o desenho.



19.10.09

GMbMc

Determinar os vértices de um triângulo ABC de que se conhecem os pontos médios - Mb de AC e Mc de AB - e o baricentro G.

16.10.09

AGMb

De um triângulo ABC, conhecem-se o vértice A, o ponto médio Mb de AC e o baricentro G. Determinar B e C.


15.10.09

MaMbMc: Solução.

Para determinar os vértices de um triângulo de que se conhecem s pontos médios dos lados, pensamos e procedemos como segue:

Se Mb é o ponto médio de AC e Mc é o ponto médio de AB, uma homotetia de razão 2 e centro em A transforma Mb em C e Mc em B. Por isso, MbMc é paralela a BC.
Então basta traçar as rectas MaMb, MaMc, MbMc. A paralela a MaMb por Mc é a recta AB, BC é a paralela a MbMc por Ma e AC é paralela a MaMc tirada por Mb. As intersecções das três recta duas a duas dão os vértices A, B e C pedidos.















Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

14.10.09

AMbMc - Resolução

Para determinar os vértices B e C de um triângulo ABC de que conhecemos o vértice A e os pontos médios dos lados AC e AB, com as ferramentas que temos à mão ou que nos deram, pensamos e procedemos assim:

Tracemos as rectas AMb e AMc. Como Mb e Mc são os pontos médios dos lados, respectivamente, AC e AB, então o simétrico de A em relação a Mc é o vértice B e o simétrico de A em relação a Mb é o vértice C.


Na aplicação que se segue, clicando sobre os botões da barra ao fundo, pode ver os passos da construção: controlando cada passo do desenho, reproduzindo a sucessão dos passos em desenho, pelo protocolo-descrição dos passos da construção















Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

12.10.09

Propriedade do baricentro

Antes de iniciarmos a publicação de exercícios envolvendo o baricentro de um triângulo, lembramos uma das suas propriedades.

Teorema. Seja o triângulo ABC e o seu baricentro G. G divide cada mediana em dois segmentos na razão 1 para 2.















Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)



Demonstração. Na construção dinâmica acima, tomámos G e as medianas que unem os vértices aos pontos médios dos lados opostos. Considere-se AMa. Vamos ver como G divide AMa.
As paralelas a CMc, tiradas por Mb e Ma, dividem AB em quatro segmentos iguais: AQ=QMc=McR=RB.
E em AMa, AP=PG=GMa. Ou seja, recorrendo ao teorema de Thales, G divide AMa em dois segmentos tais que AG= 2GMa.

O mesmo acontece com as outras medianas do triângulo.



Nota:
De forma análoga, se demonstra que uma paralela a um dos lados do triângulo tirada por G, divide cada um dos outros lados em segmentos na razão 1 para 2. (Ao cuidado do leitor)

8.10.09

Exercício: MaMbMc

De um triângulo ABC, são dados os pontos médios Ma, Mb, Mc dos seus lados. Determine os seus vértices.





Procure resolver o problema e escrever um relatório de execução. Daqui a uma semana, publicaremos a nossa resolução e o respectivo relatório.

7.10.09

Exercício: AMbMc.

Temos estado a tratar de várias demonstrações que é possível abordar no ensino da geometria do 3º ciclo. A propósito dos temas que referimos vamos dar sugestões de exercícios interactivos muito simples que permitem exercitar a utilização dos conceitos.
Na construção que se segue. de um triângulo ABC são dados A, Mb e Mc em que Mb é o ponto médio de AC(=b) e Mc é o ponto médio de AB. Pede-se que determine os vértices B e C, utliizando as ferramentas disponíveis (identiificadas por icones na barra superior).





Pedimos que, para este exercício e seguintes,tente escrever o relatório da construção que fez. Uma semana depois da proposta de exercício, publicamos a nossa resolução e respectivo relatório.

Bom trabalho!

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção