4.8.09

As espíricas, as lemniscatas

Tomemos um segmento de comprimento k e dois pontos F e F'.

É uma espírica (ou lemniscata?) a curva descrita pelos pontos P cujas distâncias a F ( |PF|=r) e F' ( |PF'|=r' ) sejam tais que o seu produto |PF|.|PF'| seja constante (k no caso):

r.r'=k



Pode deslocar os vários elementos - r, para ver o ponto P a descrever a curva - k, para fazer variar as espíricas. Verá que pode obter (uma ou duas) circunferências, elipses, ovais, ... enfim, todas as curvas que se possam obter por cortes do "toro".

Há vários tipos de lemniscatas. Interessante notar que a lemniscata se pode obter por inversão da elipse:
|OP|.|OP'|=1




Das leminiscatas, a mais famosa é a conhecida por lemniscata de Bernoulli


1.8.09

Oval de Descartes

Tomem-se dois segmentos h e k (e um terceiro unitário, para fazer contas) e dois pontos F e F'. Uma oval é o lugar geométrico dos pontos P cujas distâncias a F - |PF|=r - e a F' - |PF'|=r' - sejam tais que
r±hr'=±k




Pode deslocar os vários elementos fazendo variar as ovais, como é óbvio.

A seguir publicamos a animação respectiva.




Usando as ferramentas dos cantos inferior esquerdo e superior direito , pode parar e recomeçar a animação, pode voltar ao princípio, etc.

27.7.09

Cissóides?

Tomamos um ponto O e duas curvas a (a verde) e b (a azul) e uma recta que passa por O e corta ambas as curvas (em P a curva a e em Q a curva b).





A vermelho está assinalado o lugar geométrico dos pontos diferença: |OD|=||OQ|-OP||
A azul fica assinalado o lugar geométrico dos pontos soma: |OS|=|OP|+|OQ|


Pode sempre fazer variar as curvas e o ponto O, obtendo diversos lugares geométricos.
Pode deslocar o ponto P sobre a curva a e ver os pontos D e S a descrever os correspondentes lugares geométricos.

20.7.09

Conchóide de Nicomedes

Há uns anos atrás, para a trissecção de um ângulo com nêusis construí a conchóide de Nicomedes com recurso ao Cinderella





Aqui fica, agora feita com o Geogebra.

Na figura desta entrada, temos uma recta ( a horizontal azul) e um ponto O. As rectas (a verde) que passam por O cortam a azul em pontos P. Os pontos desta última recta que estão a igual a distância de P descrevem uma conchóide de Nicomedes, quando P percorre a recta azul.

19.7.09

A cissóide de Diocles e a parábola

Chamemos curva pedal de uma parábola ao lugar geométrico dos pontos de intersecção das suas tangentes com as suas perpendiculares tiradas pelo seu vértice. A curva pedal da parábola é uma cissóide de Diócles.





Como divertimento próprio da época, estamos a experimentar pequenas animações com o Geogebra.

14.7.09

Inversa da cissóide de Diócles



Cissóide e sua inversa



11.7.09

Quinta cissóide

Tomamos agora um ponto O, uma elipse e uma parábola.
Por O tiramos uma recta r cortando as duas curvas, em P e Q.
A cissóide é o lugar geométrico dos pontos C colineares com O, P e Q e tais que |OC|=||OP|-|OQ||.



9.7.09

Quarta cissóide

Tomamos agora um ponto O, uma elipse e uma hipérbole. Por O tiramos uma recta r cortando as duas curvas, em P e Q.
A cissóide é o lugar geométrico dos pontos C colineares com O, P e Q e tais que |OC|=||OP|-|OQ||.



8.7.09

Terceira cissóide

Tomamos agora um ponto O e duas circunferências a e b. Por O tiramos uma recta r cortando as duas circunferências em P e Q.
A cissóide é o lugar geométrico dos pontos C colineares com O, P e Q e tais que |OC|=||OP|-|OQ||.



2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção