15.10.08

Segundo Ponto de Vecten

T omemos agora os centos dos quadrados construídos interiormente sobre os lados a, b, c; sejam Qa, Qb, Qc. As rectas AQa, BQb, CQc intersectam-se num ponto: segundo ponto de Vecten, Vc2.
É o ponto X(486) do catálogo de Kimberling.


Etiquetas: ,

Primeiro Ponto de Vecten

Dado um triângulo ABC, tomemos os centros dos quadrados construídos exteriormente sobre os lados a, b, c; sejam Pa, Pb, Pc. As rectas APa, BPb, CPc intersectam-se num ponto: primeiro ponto de Vecten, Vc1.
É o ponto X(485) do catálogo ETC de Kimberling.


Etiquetas:

14.10.08

Segundo triângulo de Brocard

Existe uma circunferência de diâmetro [OK] que passa por A1, B1, C1: “círculo de Brocard”. Os três pontos A1, B1, C1 definem o “primeiro triângulo de Brocard”.

As simedianas do triângulo intersectam-se em K, como vimos. E, portanto, intersectam o primeiro círculo de Brocard em K e em mais três pontos: A2, B2, C2. Estes três pontos definem o “segundo triângulo de Brocard”. Estes três pontos também se situam sobre o círculo de Brocard.
O círculo de Brocard é, assim, o “círculo dos dez pontos”: O, K, Br1, Br2, A1, B1, C1, A2, B2, C2.



Os dois triângulos de Brocard são homológicos, por uma homologia de eixo e. O centro da homologia é a intersecção das rectas AIA2, B1B2 e C1C2 que é afinal o centro de gravidade do triângulo ABC.

Etiquetas:

10.10.08

Círculo e primeiro triângulo de Brocard

Projectemos o ponto K de Lemoine sobre as mediatrizes dos lados do triângulo: sejam A1, B1, C1 essas projecções.Os triângulos [A1BC], [B1CA], [C1AB] são isósceles (o vértice definido pelos lados iguais pertence à mediatriz da base) e a medida dos ângulos (iguais) da base é u.

Existe uma circunferência de diâmetro [OK] que passa por A1, B1, C1: “círculo de Brocard”. Os três pontos A1, B1, C1 definem o “primeiro triângulo de Brocard”.



Etiquetas:

9.10.08

Segundo Ponto de Brocard

Conhecido Br1 - primeiro ponto de Brocard, ficamos a conhecer a medida do ângulo u. Assim podemos determinar a posição do
“segundo ponto de Brocard”, Br2.
Um processo mais expedito para obter Br2 é o seguinte: sabe-se que as projecções ortogonais dos pontos Br 1 e Br2 sobre os lados do triãngulo são concíclicos; projectamos ortogonalmente Br1 sobre a, b, c; a circunferência definida pelos três pontos intersecta a, b, c em outros três pontos que são as projecções de Br2.



Etiquetas:

7.10.08

Pontos de BROCARD

Brocard encontrou dois pontos referentes ao triângulo [ABC] (sejam Br1 e Br2), tais que verificam a seguinte propriedade:
São iguais os ângulos <)Br1AB = <)Br1BC =<) Br1CA = <)Br2AC =<) Br2CB = <)Br2BA = u.

O ângulo u é o “ângulo de Brocard”; a recta definida pelos pontos Br1e Br2 é a “recta de Brocard”.




Um dos modos de obter o “primeiro ponto de Brocard”, Br1, é o seguinte:
tracemos três circunferências:
- de corda [AB]; centro na mediatriz de AB; tangente a BC em B;
- de corda [BC]; centro na mediatriz de BC; tangente a AC em C;
- de corda [CA]; centro na mediatriz de CA; tangente a AB em A.
O “primeiro ponto de Brocard” é a intersecção das três circunferências.

Etiquetas:

1.10.08

Ponto isogonal do ponto do infinito de uma recta

Determinar o ponto, R, isogonal do ponto do infinito da recta r relativamente ao triângulo ABC.
As isogonais das rectas paraleltas a r tiradas pelos vértice A, B e C, têm um ponto comum, R, que é o isogonal do ponto do infinito de r.

Etiquetas:

26.9.08

Triângulos inversamente semelhantes

Dado o triângulo ABC, sejam V1 e V2 os seus pontos de Fermat e W1 e W2 os pontos isodinâmicos. Os triângulos [V1V2W1] e [V1V2W2] são inversamente semelhantes. De facto, são iguais os ângulos <)V1V2W2 = <)W1V1V2, etc


Etiquetas:

Pontos Isodinâmicos e de Napoleão

Recordemos que para obter os pontos isogónicos (ou de Fermat), W1 e W2, construímos triângulos equiláteros sobre os lados do triângulo ABC exteriormente (interiormente) e unimos o ápice de cada um com o vértice oposto. Para obter os pontos de Napoleão, Np1 e Np2, unimos os centros dos triângulos externos (internos) com os vértices opostos.




Verifica-se que:
- as rectas W1Np1 e W2Np2 se intersectam no ortocentro H;
as rectas W1Np2 e W2Np1 se intersectam no ponto médio do segmento definido pelo circuncentro O e pelo centro do círculo de nove pontos N.

Etiquetas:

23.9.08

Outro processo de obter pontos isodinâmicos

Para obter os pontos isodinâmicos de um triângulo ABC, tomemos

  • os simétricos de A relativamente a BC (A2), de B relativamente a AC (B2) e de C relativamente a AB (C2);

  • os ápices dos triângulos equiláteros construídos sobre os lados de ABC, externamente A1, B1 e C1 ou internamente A1*, B1* e C1*



As rectas A1A2, B1B2 e C1C2 encontram-se num dos pontos isodinâmicos de ABC e as rectas A1*A2, B1*B2 e C1*C2 encontram-se no outro.



Etiquetas: ,

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção