23.6.08

Teorema de Napoleão

Se tomarmos triângulos equiláteros sobre os lados de um triângulo qualquer, os centros desses triângulos equiláteros são vértices de um triângulo equilátero.

Na construção dinâmica que se segue, construíram-se triângulos equiláteros [BCD], [ACE] e [ABF]. O triângulo [GHI] é equilátero.
Do mesmo modo, é equilátero o triângulo [XYZ] em que X é o centro de [BCT], Y é o centro [ACU] e Z é o centro de [ABV]-





Pode movimentar A, B ou C e ver como a propriedade persiste. Tem interesse ver o que acontece quando A, B e C ficam alinhados ou quando dois destes pontos coincidem.

0 Commentários:

Enviar um comentário

<< Home

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção