A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

9.1.08

Pitágoras

Há não muito tempo apresentámos diversas decomposições e recomposições (com triângulos e rectângulos).
No âmbito da Escola de Educação Complementar do Departamento de Matemática da Universidade de Aveiro, apareceram algumas propostas de trabalho em que se propunha fazer uma moldura considerando uma determinada decomposição de um quadrado. Como resultado, obtinha-se um novo quadrado. Sempre nos pareceu que ali estaria uma nova demonstração para o Teorema de Pitágoras. Assim confirmámos em pequenas incursões exploratórias. Despertou-nos especial curiosidade, o trabalho de Herman Vogel, da Universidade Técnica de Munique, que apresenta vários exemplos de construções interactivas, cada uma delas recorrendo aos diversos programas (software) de geometria dinâmica europeus. Recomendamos esse trabalho a quem quiser comparar as potencialidades dos diversos programas - Cinderella, CaR (ZuL), Geogebra, Cabri, Euklid-DynaGeo e GeoNExT




Mesmo contando com ajudas (que agradecemos), para nós, não foi nada fácil a realização desta animação. Aqui fica. Esperamos que gostem e seja útil.

7.1.08

Cadeia de Pappus

Continuemos então com as tangências e a tentar dar respostas construtivas às dúvidas que nos têm sido postas. Agradecemos ao André Filipe Oliveira as dúvidas e interrogações que nos obrigam a verificar que construções sabemos fazer e quais são possíveis com a régua e compasso do ZuL ou do CaR.metal. O que formos descobrindo, aqui publicamos. Se subsistirem dúvidas, não hesitem em contactar-nos.


Ora aqui ficam definições e resultados da Cadeia de Pappus acompanhados das respectivas construções interactivas:

Dadas duas circunferências de centros F1 e F2, chama-se “cadeia de Pappus” ao conjunto das circunferências tangentes simultaneamente às circunferências dadas. Demonstra-se que o conjunto dos centros das circunferências de Pappus define uma elipse de focos F1 e F2 e eixo maior [AB].



Consideremos um raio vector que intersecta o círculo maior em P e o círculo menor em Q. As paralelas aos eixos por P e Q determinam um ponto X da elipse, centro de uma circunferência de Pappus. Pode deslocar o ponto P.




Num arbelo, a cadeia de Pappus inicia-se com o círculo tangente às três semicircunferências.


2.1.08

Bom 2008



Aurélio Fernandes acha que o melhor mesmo é publicar uma ideia da construção que fomos fazendo sobre círculos gémeos de Arquimedes (sobre arbelos), enquanto tentamos compreender um problema-pedido que nos vão explicitando devagar. Veremos.

25.12.07

Quadratura

Neste lugar geométrico, já abordámos o problema de transformar certas figuras em quadrado com a mesma área. A Miscelánea Matemática (Sociedad Matematica Mexicana), no seu número 24, de Setembro de 1996, propunha o problema da entrada anterior (que já vimos proposto em outras publicações) e propunha também quadraturas do rectângulo de dimensões 9 e 6. Como exemplo, apresentava a quadratura que se segue, pedindo uma outra.

Quer tentar a outra?
Estes exercícios têm um grande interesse básico, não só pelo que significam de geométrico, mas também pelo que podem significar de conceitos operatórios e de propriedades das operações. Alguns jovens a frequentar o 10º ano de escolaridade mostraram desconhecer o que significa quadrado perfeito quando pedíamos que verificassem a possibilidade de preencher um quadrado de 6 por 6 com peças de tetraminós ou de pentaminós.

24.12.07

De um só golpe, cortar dois quadrados em partes iguais

Com uma só recta, cortar os dois quadrados da figura em duas partes equivalentes e de tal modo que cada um dos quadrados fica dividido em duas parte geometricamente iguais.
Atenção! Neste exercício interactivo, o alvo não fica visível.



++++++++++++++++++
Prenda de Natal: Cortar bolos. Faça você mesmo!

21.12.07

Uma demonstração para variar

O resultado surpreendente que apresentámos na entrada anterior tem relação com resultados sobre triângulos já abordados por aqui há muito tempo. Para boicotar o trabalho do índice, que tarda em ser feito para melhorar a consulta deste blog, Aurélio Fernandes achou por bem defender a apresentação de uma demonstração desse resultado: O baricentro dos incentro e ex-incentros de um triângulo é o seu circuncentro. (problema 58. do Éxércices de Géométrie - Compléments de Th. Caronnet). Aqui fica. Na construção que se segue pode acompanhar a demonstração e, usando o compasso, ir verificando as afirmações sobre igualdade de segmentos...



O baricentro dos 4 pontos I, J, K e L pode ser obtido como ponto médio dos pontos médios de [IJ] e [KL].
Para vermos a localização desse baricentro, tomemos AB para eixo das abcissas e A para origem das coordenadas. E tomemos as projecções de I, J, K, L.
Na série Despertar dos Geómetras, pela mão da Mariana, aparecem os resultados:
  • |AJ'|=|BK'|=p, em que p é o semiperímetro de [ABC]: (|AB|+|BC|+|AC|)/2

  • |AI'|=|BL'|=p-c ou |BI'|=|AL'| =p-b

  • |I'J'|=|BC|=a

  • |AI'|=p-a


  • O ponto, M, médio de [IJ] tem abcissa (|AI'|+|AJ'|)/2 e o ponto, N, médio de [KL] tem abcissa (|AK'|+|AL'|)/2. O baricentro dos quatro pontos ou ponto médio de [MN] tem abcissa ((|AI'|+|AJ'|)/2+(|AL'|-|AK'|)/2)/2 = (|AI'|+|AJ'|+|AL'|-|AK'|)/4, e, por ser |AK'|=p-c e |AL'|= p-b, a abcissa do baricentro é afinal
    (p-a+p+p-b-(p-c) )/4= (2p-a-b+c)/4=c/2
    que garante que este está sobre a mediatriz de [AB].
    De igual modo, se prova que está sobre as mediatrizes de [AC] e de [BC].

    O baricentro dos incentro e ex-incentros de um triângulo é o circuncentro do triângulo.

    2014
    EUCLIDES
    Instrumentos e métodos

    de resolução de problemas de construção