19.8.07

Perpendicularidades e inversões


A construção acima (com a qual pode interagir) ilustra bem que,
  • se tomarmos para unidade o raio da circunferência verde (|OT|=1), |OA| -1=|OP|,
    ou, o que é o mesmo, A é o transformado de P pela inversão associada à circunferência verde;

  • se tomarmos para unidade o raio da circunferência azul (|PT|=1). |PA| -1 =|OP|,
    ou, o que é o mesmo, A é o transformado de O pela inversão associada à circunferência azul.

As rectas OT e PT são perpendiculares (OT é tangente à circunferência azul e PT é tangente à circunferência verde em T). Do mesmo modo, OS e PS são perpendiculares.

Dizemos que duas circunferências se intersectam perpendicularmente quando os raios tirados para um ponto de intersecção são perpendiculares, que é o mesmo que dizer quando eles são catetos de um triângulo rectângulo cuja hipotenusa é o segmento que une os seus centros.
Designando por r1 e r2 os raios das circunferências, (|OT|= r1 e |PT|=r2), r12 + r22 = |OP| 2
r12 = |OP| 2 - r22
r22 = |OP| 2 - r12


E isto é para ser lido: duas circunferências são ortogonais (perpendiculares), quando a potência de qualquer delas no centro da outra é o quadrado do raio da outra.

0 Commentários:

Enviar um comentário

<< Home

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção