26.6.07

Centro de uma involução.

Dados dois pares de pontos em involução, determinar o centro O da involução

Consideremos uma involução definida sobre uma recta r por dois pares de elementos conjugados, (A,A') e (B,B'); vejamos como proceder para obter o centro O da involução:

Tracemos uma circunferência qualquer passando por A e A'; outra passando por B e B', de modo que se intersectem. Tracemos o eixo radical das duas circunferências. A intersecção do eixo radical com a recta r determina o ponto O. Basta recordar que o eixo radical de duas circunferências é o lugar geométrico dos pontos que têm igual potência em relação às duas circunferências; logo |OA|.|OA'| = |OB|.|OB'|

Como determinar um novo par? Claro que, qualquer circunferência que faça parte do feixe definido por este eixo radical, define novo par de elementos conjugados.





Se mantiver fixos os pontos A, A', B e B', deslocando os centros das circunferências (enquanto se intersectem), verá que o ponto O se mantém invariante. Claro que se deslocar os pontos A, A', B e B' verificará que o ponto O muda (é centro de uma nova involução).




Dado um par de pontos em involução, o centro e um dos elementos de outro par, determinar a sua imagem

São dados o centro O, o par (A,A') e o ponto B. Pede-se o ponto B' conjugado de B.

Tracemos uma circunferência qualquer que contenha A e A'. Por O façamos passar uma recta que intersecte a circunferência e que vai ser o eixo radical de um feixe de circunferências. A circunferência que passa por B, K, L determina B´sobre r.

0 Commentários:

Enviar um comentário

<< Home

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção