13.2.13

Feixe de segunda ordem (circular)

Atente na figura dinâmica imediatamente abaixo.
Por X, variável sobre a tangente à circunferência em P, passam duas tangentes XP e XT. Por isso, OT=OP e XP=XT e, em consequência, os ângulos POX=XOT. Por X'=XT.QQ', passam duas tangentes à circunferência X'T e X'Q' e são congruentes ângulos Q'OX' e X'OT. Ou, ainda pela mesma razão, QOP=P'OQ'. XOT=(POT)/2 e X'OT=(Q'OT)/2 XOT+X'OT=(POQ')/2=POQ, constante para cada par (P,Q), e, finalmente, XOT+X'OT=XOX'= POQ.
[Pode mover T, P ou Q']? podia.
Quer dizer que, para qualquer tangente por T, variável sobre a circunferência, os pontos de intersecção dela com a tangente em P e com a tangente em Q', X e X', são tais que o ângulo XOX' é constante ou é independente de T. Isto é o mesmo que dizer que as retas do feixe, centrado em O, das retas OX' e OX estão relacionadas por uma rotação de centro O e ângulo de amplitude igual à de POQ. Os feixes assim construídos, x=OX e x'=OX', são congruentes e, portanto, projetivos. O ângulo formado por quaisquer duas retas do feixe x é transformado por rotação de centro O e amplitude POQ num ângulo de duas retas do feixe x', logo igual. As razões duplas de 4 retas do feixe x e das correspondentes do feixes x' são, por isso, iguais. E assim acontecerá para as razões duplas dos pontos correspondentes nas secções por PQ e Q'P'. Pode deslocar T sobre a circunferência e verá assim que, pela projetividade entre as pontuais X e X', quando X=P é X'=P' e que, quando X'=Q' é X=Q. Para além de significar que os pontos P, Q, P', Q' fazem parte das pontuais projetivas, também significa que PQ e P'Q' são posições possíveis das retas XX'.
As pontuais de pontos X sobre PQ e X' sobre Q'P' são secções por PQ e Q'P' dos feixes x e x' centradas em O que são projetivos. E as retas XX' que passam pelos pontos correspondentes das pontuais projetivas têm um só ponto comum com a circunferência.
Este conjunto de retas XX' é um feixe de segunda ordem por ser um conjunto de retas definidas por por pontos homólogos de duas pontuais de primeira ordem projetivas e não perspetivas e de bases distintas. Diz-se que a cónica é a envolvente das retas deste feixe de segunda ordem.
A pontual de segunda ordem é uma curva de segunda ordem (cónica) que contém os vértices V e V' dos feixes projetivos e não perspetivos que a geram por intersecção das retas correspondentes.
O feixe de segunda ordem é envolvido por uma curva de segunda ordem (cónica) que contém as bases das pontuais, projetivas e não perspetivas, que a geram por ligação dos pontos correspondentes
Pode assim definir-se uma cónica como base de uma forma elementar de 2ª ordem (pontual ou feixe).
Chama-se razão dupla de 4 tangentes de um feixe de 2º ordem à razão da pontual que se obtém cortando essas 4 retas tangentes por uma outra tangente qualquer.

Segue-se uma ilustração das pontuais, projetivas não perspetivas, em distintas bases, feixes centrados em O, ângulos e razões duplas calculadas, etc.

Por favor habilite Java para uma construção interativa (com Cinderella).
Pode deslocar os pontos de tangência [?: PODIA ]


Finalmente apresentamos uma construção do eixo da projetividade definida pelas pontuais A, B, C e A', B', C' que é a reta PQ' e ilustramos com uma reta XX' em que X é variável sobre PQ e X' é determinado usando o eixo da projetividade definida. Pode animar a figura e verificar como XX' em todas as suas posições mantém um ponto de contato com a circunferência e como o conjunto das retas XX' formam a circunferência.

Por favor habilite Java para uma construção interativa (com Cinderella).
Pode controlar a animaçao e mover os pontos P e Q'[? PODIA]

O eixo da projetividade é a reta que passa pelos pontos de tangência das bases das pontuais projetivas. Sabemos que a reta PQ' é a polar do ponto P' ou Q (ponto duplo da projetividade) Se as bases PQ e P'Q' se encontrarem num ponto do infinito, o eixo de projetividade (ou a polar do ponto no infinito das bases) passa pelo centro da circunferência.

F. I. Asensi, Geometria Descriptiva Superior y Aplicada. Editorial Dosssat, S.A. Madrid:1980
Richter-Gebert. Perspectives on Projective Geometry. Springer. Berlin:2011
H. S. M. Coxeter, Projective Geometry, Springer. NY:1994
C.F. Klein, Elementary Mathematics from an advanced standpoint - Geometry Dover Publications, inc. New York:2004

8.2.13

Pontual de segunda ordem (circular)

Na construção que se segue, temos uma circunferência e dois feixes de retas centrados em pontos V e V' da circunferência, abcd a passar por V e a'b'c'd' a passar por V', em que a=VA, b=VB, c=VC, d=VD e a'=V'A, b'=V'B, c'=V'C, d'=V'D, sendo A, B, C, D pontos da circunferência: a.a'=A, b.b'=B, c.c'=C e d.d'=D.
Verifica-se que os ângulos AVC (de vértice V e lados VA=a e VC=c) e AV'C (de vértice V' e lados V'A=a' e V'B=b' são iguais (ou congruentes por estarem inscritos no mesmo arco da mesma circunferência), etc. As igualdades dos ângulos (a,c)=(a',c'), ... ilustradas na construção, garantem que são iguais as razões duplas dos 2 feixes: (abcd)=(a'b'c'd'), ou seja os feixes V(ABCD) e V'(ABCD) são projetivos
De facto, já tínhamos visto que os feixes projetivos V(ABC) e V'(ABC) definem a cónica que passa por V, V', A, B, C. Estamos com esta construção a ilustrar que a projetividade mantém invariantes as razões duplas tanto pelo lado dos ângulos e das retas (abcd)=(a'b'c'd') como pelas pontuais resultantes de secções dos feixes por uma reta r.
Lembramos que a razão dupla de um feixe (abcd) é igual à razão dupla de qualquer pontual retilinea que se obtenha por secção do feixe e que dois feixes abcd e a'b'c'd' são projetivos sse (abcd)=(a'b'c'd').
No caso presente da nossa construção com circunferência, dadas as relações de iguadade ou congruência entre os ângulos correspondentes, diz-se mesmo que os feixes são congruentes.
Transcrevem-se os enunciados de Izquierdo a este respeito:
Os feixes obtidos ao projetar os pontos A, B, C de uma circunferência a partir de vários pontos dela, V, V', ... são congruentes e, por isso projetivos e, reciprocamente,
O lugar geométrico dos pontos de intersecção das retas correspondentes (não paralelas) a.a', b.b',... de dois feixes congruentes centrados em V e V' é uma circunferência que passa pelos vértices dos feixes.
Esse lugar geométrico recebe o nome de pontual circular ou circunferência pontual. Dois feixes de primeira ordem projetivos não perspetivos determinam uma pontual de segunda ordem.
Por favor habilite Java para uma construção interativa (com Cinderella).

Se pensarmos na reta VV' como reta do feixe centrado em V, a correspondente reta no feixe centrado em V' será a tangente em V' (V' é ponto da pontual circular interseção dessas retas correspondentes). Se pensarmos em VV' como reta do feixe centrado em V' a sua correspondente é a tangente em V. A base da pontual de segunda ordem (circular neste caso) é a circunferência a que pertencem os pontos da pontual.
F. I. Asensi, Geometria Descriptiva Superior y Aplicada. Editorial Dosssat, S.A. Madrid:1980
Richter-Gebert. Perspectives on Projective Geometry. Springer. Berlin:2011
H. S. M. Coxeter, Projective Geometry, Springer. NY:1994
C.F. Klein, Elementary Mathematics from an advanced standpoint - Geometry Dover Publications, inc. New York:2004