26.4.10

Triângulo rectângulo de ouro

Um triângulo rectângulo de ouro é aquele em que a razão entre a hipotenusa e um cateto é o número de ouro.
Podemos, por isso, também dizer, que um triângulo rectângulo de ouro é todo o triângulo semelhante a um triângulo rectângulo de catetos e hipotenusa 1, √Φ e Φ.
Esta última definição evidencia três propriedades:
• Φ2 = Φ + 1, é uma propriedade numérica do número de ouro (Φ é solução da equação x2 = x + 1)
• Num triângulo rectângulo de ouro os lados estão em progressão geométrica sendo a razão √Φ
• √Φ =√(1.Φ), num triângulo rectângulo de ouro o cateto maior é a média geométrica entre o cateto menor e a hipotenusa.
Como construir um triângulo rectângulo de ouro?
Seja um segmento de recta [AB] e dividamo-lo em média e extrema razão. Basta tomar para hipotenusa a parte maior e para cateto a parte menor. O cateto maior é, como se pode verificar a média geométrica das duas partes.






Uma vez construído um triângulo rectângulo de ouro (pelo processo mostrado anteriormente), vemos que são semelhantes e consequentemente também de ouro, os triângulos [AMC] e [ABC]



22.4.10

Espiral construída sobre o triângulo de ouro

Vejamos como construir uma espiral sobre o triângulo de ouro ABC.
1. Traçamos a bissectriz do ângulo BAC que intersecta BC em D; o arco CA de centro D e raio DA é o primeiro arco da espiral.
2. Traçamos a bissectriz do ângulo ABC que intersecta AD em E; o arco AB de centro E e raio EA é o arco seguinte da espiral.
3. Traçamos a bissectriz do ângulo ADB que intersecta BE em F; o arco BD de centro F e raio FB é o arco seguinte da espiral.
4. Traçamos a bissectriz do ângulo DEF que intersecta DF em G; o arco DE de centro G e raio GE é o arco seguinte da espiral.
5. Traçamos a bissectriz do ângulo EFG que intersecta EG em H; o arco EF de centro H e raio HE é o arco seguinte da espiral.
6. Traçamos a bissectriz do ângulo FGH que intersecta FH em I; o arco FG de centro I e raio IF é o arco seguinte da espiral.
7. …