27.7.09

Cissóides?

Tomamos um ponto O e duas curvas a (a verde) e b (a azul) e uma recta que passa por O e corta ambas as curvas (em P a curva a e em Q a curva b).





A vermelho está assinalado o lugar geométrico dos pontos diferença: |OD|=||OQ|-OP||
A azul fica assinalado o lugar geométrico dos pontos soma: |OS|=|OP|+|OQ|


Pode sempre fazer variar as curvas e o ponto O, obtendo diversos lugares geométricos.
Pode deslocar o ponto P sobre a curva a e ver os pontos D e S a descrever os correspondentes lugares geométricos.

20.7.09

Conchóide de Nicomedes

Há uns anos atrás, para a trissecção de um ângulo com nêusis construí a conchóide de Nicomedes com recurso ao Cinderella





Aqui fica, agora feita com o Geogebra.

Na figura desta entrada, temos uma recta ( a horizontal azul) e um ponto O. As rectas (a verde) que passam por O cortam a azul em pontos P. Os pontos desta última recta que estão a igual a distância de P descrevem uma conchóide de Nicomedes, quando P percorre a recta azul.