6.11.12

Desargues: Teorema da involução

Teorema da involução de Desargues:
Das cónicas que passam pelos vértices de um quadrilátero, aquelas que intersetam uma dada reta (que não passe pelos vértices) fazem-no num par de pontos de uma involução.

A construção que se segue pretende ilustrar este enunciado. Na figura está representado um quadrângulo de vértices P, Q, R, S e uma reta g que não passa por qualquer desses vértices. Representa-se também uma cónica de entre as que passam pelos 4 vértices do quadrângulo.
Os pontos de intersecção da reta g
com os lados do quadrângulos são A=PS.g, B=QS.g, D=QR.g, E=PR.g
e com a cónica são T e U.

Por favor habilite Java para uma construção interativa (com Cinderella).
Pode deslocar os pontos R e S e o ponto verde sobre a cónica, de modo a ver o que acontece nas diversas posições. E também pode controlar a animação no controlador ao fundo à esquerda.

Se considerarmos os pontos S, R, T, U como posições de um ponto variável da cónica, podemos considerar dois feixes projetivos de retas, um centrado em P relacionado com outro centrado em Q.
PS→A=PS.g e QS→B=QS.g
PR→E=PR.g e PS→D=PS.g
E como já tinhamos visto no Teorema de Steiner, há uma projetividade que transforma A em B e E em D.
Deslocando o ponto verde sobre a cónica, vê-se que quando este coincide com R as intersecções com g das retas correspondentes dos feixes por P e por Q estão em A e B; quando este ponto verde coincide com S as intersecções com g das retas correspondentes nos dois feixes por P e Q estão em E e D. Já quando o ponto verde (variável, claro) coincide com T ambas as retas correspondentes dos feixes projetivos por P e Q intersetam a reta g no mesmo ponto T e, como é óbvio, qando o ponto verde é U as retas correspondentes dos dois feixes projetivos intersetam g em U.
Podemos, pois, escrever que
há uma projetividade que transforma AETU em BDTU. E, como sabemos que quaisquer quatro pontos colineares podem ser permutados por uma projetividade, BDTU e DBUT são projetivos.
Em conclusão: como AETU projetivo com BDTU e BDTU projetivo com DBUT, também AETU é projetivo com DBUT, ou seja, podemos concluir que o par TU das intersecções de g com a cónica é um par da involução (AD)(BE) que depende unicamente do quadrângulo. O que quer dizer que o resultado é válido para todas as cónicas de que g seja secante ou tangente, isto é, determinando um par (T≠U) ou um ponto invariante (T=U) da involução.
Vale a pena ainda ver que, quando o R coincide com P, a reta RP é substituída pela tangente em P. Ou quando R=Q, a reta RQ é substituída pela tangente em Q ou quando S=Q, SB é a tangente em Q.…
Assim, podemos escrever que
das cónicas tangentes a uma reta num dado ponto e que passam por dois outros pontos dados, se intersetam uma outra reta (não passando por qualquer dos três pontos dados) fazem-no em pares de uma involução.
H. S. M. Coxeter, Projective Geometry, Springer. NY:1994

5.11.12

Teorema de Pascal

Na entrada Hexágono com diagonais concorrentes tem uma cónica inscrita ilustrava-se o resultado:
Teorema de Brianchon (1760-1854): Se os lados de um hexágno são tangentes a uma cónica, as suas três diagonais inicidem num só ponto, ou "se um hexágono circunscreve uma cónica então as suas diagonais são concorrentes"
obtido por dualização do Teorema de Pascal (1623-1662): Se pelos vértices de um hexágono passa uma cónica, os pares de lados opostos intersetam-se em 3 pontos que inicidem numa mesma reta, ou se um hexágono se inscreve numa cónica, os pares de lados opostos intersetam-se em pontos colineares.
Na ilustração que se segue, temos uma cónica e o hexágono de lados a, b, c, d, e, f nela inscrito (os vértices a.b, c.d, d.e, e.b, b.f e f.a são pontos da cónica) sendo, por isso, os pontos a.d, b.e, c.f colineares.

Por favor habilite Java para uma construção interativa (com Cinderella).

Em "Essay pour les coniques" de 1640, Blaise Pascal enuncia este resultado como segue:"Se num plano MSQ, do ponto M partem as duas retas MK e MV, e do ponto S partem as duas retas SK, SV… e pelos pontos K e V passa a circunferência de um círculo cortando as retas MV, MK, SV, SV, SK nos pontos O, P, Q, N:
eu digo que as retas MS, No, PQ são da mesma ordem" no sentido de pertencerem a um mesmo feixe.

Vale a pena chamar a atenção para o facto de este Teorema de Pascal ser o recíproco do resultado ilustrado em Cónica por 5 pontos: Construção de Braikenbridge e Maclaurin


H. S. M. Coxeter, Projective Geometry, Springer. NY:1994
H. S. M. Coxeter, Introduction to Geometry. 2nd ed, Wiley Classics Library. NY:1989