24.9.12

Polar de um ponto relativamente a uma cónica

As construção e demonstração da entrada anterior pretendem convencer que cada cónica, qualquer que ela seja, induz uma polaridade que fica definida por qualquer quadrângulo de vértices P,Q,R,S sobre a cónica para o qual se prova que o triângulo diagonal ABC é auto-polar. Antes disso já se tinha definido cónica como lugar geométrico dos pontos auto-conjugados para uma polaridade (ABC)(Pp).
Desse modo, ficou também indicado o método para determinar a polar de um ponto qualquer não incidente na cónica. Para determinar a polar de um ponto C bastaria traçar duas retas por C, secantes à cónica (seguindo a figura dessa entrada) PQ e RS para, em seguida, obter os restantes pontos de intersecção de lados opostos de PQRS: A=PS.QR e B=PR.QS
A reta AB=c (lado oposto a C no triângulo diagonal ABC, como vimos, auto-polar) é a polar de C.

Insistimos na determinação da polar. Como determinamos a polar de um ponto A (ponto negro) relativamente à cónica (vermelha) da figura?
Por A traçámos duas secantes à cónica QR e PS. Em seguida, determinados B=PR.QS e C=PQ.RS, pontos de intersecção dos restantes lados opostos de PQRS. ABC é o triângulo auto-polar de PQRS inscrito na cónica e, por isso, a polar de A é a=BC.

da antiga: Por favor habilite Java para uma construção interativa (com Cinderella).


Nesta entrada, se deslocar A, alterando a posição de A do interior para o exterior, pode verificar a relação entre as posições relativas de A e a relativamente à cónica. Pode deslocar o ponto P sobre a cónica para verificar que a não depende das secantes tiradas por A. Deixámos o ponto R (de que o desenho depende) para poder variar a cónica.

21.9.12

Da cónica para a polaridade associada

Na entrada anterior, tomámos a polaridade (ABC)(Pp) em que P incide em p. P é um ponto da cónica associada sendo p a tangente à cónica em P. Outros três pontos da cónica Q, R e S ficaram determinadas como conjugados harmónicos de P sobre as secantes CP (relativamente a C e CP.c), BP (relativamente a B e BP.b), AP (relativamente a A e AP.a).
Ap=AP.a, Bp=BP.b e Cp=CP.c são pontos de p, polar de P, conjugados de P. Aliás todos os pontos da reta p (tangente em P) são conjugados de P. Determinados os pontos Q, R e S deste modo a partir de (ABC)(Pp), a construção sugere que A=RQ.PS, B=PR.QS e C=PQ.RS ou que o triângulo auto-polar ABC é o triângulo diagonal do quadrângulo PQRS.
O último parágrafo da entrada anterior sugere que se se os vértices de um quadrângulo PQRS completo forem pontos auto-conjugados para uma dada polaridade, então o triãngulo diagonal ABC do quadrângulo é um triângulo auto-polar.
O lugar geométrico dos pontos autoconjugados de uma polaridade (hiperbólica) é uma cónica.
Será que se tivermos quatro pontos de uma cónica P, Q, R, S , o seu triângulo diagonal ABC é um triângulo auto-polar?
A construção seguinte ilustra isso mesmo


da antiga:Por favor habilite Java para uma construção interativa (com Cinderella).
Os pontos diagonais são as intersecções dos lados opostos do quadrângulo: A=PS.QR, B=PR.QS e C=RS.PQ. Tomemos ainda os pontos de intersecção com o lado AB do triângulo diagonal oposto ao vértice C, a saber: E=AB.RS e F=AB.PQ
Sabemos das relações harmónicas H(AB,EF), H(PQ,CF) ou H(RS,CE) e, em consequência, ficamos a saber que C é conjugado de E e também conjugado de F, ou seja, C é polo de AB=c, seu lado oposto. De modo análogo, ficaremos a saber que B é polo de AC e A é polo de BC.
É auto-polar o triângulo diagonal ABC de um quadrângulo qualquer PQRS de vértices incidentes numa cónica.
Sabíamos que, sendo P∈p, a polaridade (ABC)(Pp) determina uma cónica.
Esta construção ilustra bem que uma cónica induz uma polaridade e mostra como ela se determina. Serve também para sugerir um método construtivo para determinar a polar de um qualquer ponto C que não seja ponto da cónica.
Já agora, pode reparar que
Um ponto interior, no caso C, tem uma polar que não interseta a cónica (é não secante). A polar de um ponto exterior, A por exemplo, interseta a cónica (é secante). A polar de um ponto da cónica, P por exemplo, passa por um só ponto da cónica (é tangente).