De entre as pavimentações apresentados nas entradas precedentes, encontram-se vários exemplos de pavimentações (com um só tipo de ladrilhos) de entre os quais destacamos os quadrados (p4m) que pavimentam. Pavimentações como essa de ladrilhos quadrados tomam o nome de pavimentações regulares em que cada vértice é vértice de 4 ângulos retos (4x90=360) ou de 4 quadrados (todos os vértices são da mesma espécie
4.4.4.4).
Nestas pavimentações, podemos chamar vértices da pavimentação aos vértices dos ladrilhos.
Claro que um triângulo equilátero (e equiangular) pavimenta o plano. Cada vértice de um ladrilho (triangular regular) é vértice de seis ladrilhos ou vértice de 6 ângulos de 60 graus (6x60=360) ou vértice de 6 triângulos regulares (todos os vértices são da mesma espécie
3.3.3.3.3.3)
Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.
Também o hexágono regular pavimenta o plano. Cada vértice de um ladrilho hexagonal regular é vértice de 3 ângulos de 120 graus (ângulo interno do hexágono regular)(3x120=360) ou é vértice de 3 hexágonos regulares (todos os vértices são da mesma espécie
6.6.6) .
Deslocando os pontos a verde, em cada figura dinâmica, pode mudar o tamanho e a orientação dos ladrilhos.
O mesmo não podemos dizer do pentágono regular que tem um ângulo interno de 72 graus e 360 não é múltiplo de 72.