Nenhuma destas abordagens pode ser considerada inibida ou excluída na leccionação e é razoável pensar que cada estudante pode decidir por qualquer delas para chegar à fórmula da área ou para calcular a área se não se lembrar da fórmula.
7.10.10
Nota sobre a mediana e a área do trapézio
A dedução de uma fórmula da área do trapézio é feita nas folhas de experimentação do ensino básico usando um triângulo equivalente ao trapézio. Também poderia ser feita a partir da soma de dois triângulos que compõem o trapézio como vimos. Mas outra forma será passando do trapézio para um rectângulo em que uma das dimensões é o segmento MN (segmento de extremos nos pontos médios dos lados não paralelos a que chamamos mediana e cujo comprimento é semi-soma dos comprimentos das bases do trapézio). A propriedade dos pontos médios dos lados não paralelos que também dividem a meio a altura do trapézio e da mediana do trapézio também merecem referência especial. Propomos uma construção dinâmica que ilustra bem a equivalência entre o trapézio ABCD e o rectângulo EFGH em que podemos apreciar a congruência e equivalência dos pares de triângulos (acrescentados/subtraídos) e relação das bases do trapézio com a mediana MN. Pode fazer variar a figura deslocando A, B C ou D ou o ponto auxiliar a azul (este para fazer variar a altura do trapézio). Os botões servem para ocultar ou mostrar cada uma das figuras (trapézio ABCD, rectângulo EFGH, triângulo a triângulo...)
Nenhuma destas abordagens pode ser considerada inibida ou excluída na leccionação e é razoável pensar que cada estudante pode decidir por qualquer delas para chegar à fórmula da área ou para calcular a área se não se lembrar da fórmula.
Nenhuma destas abordagens pode ser considerada inibida ou excluída na leccionação e é razoável pensar que cada estudante pode decidir por qualquer delas para chegar à fórmula da área ou para calcular a área se não se lembrar da fórmula.
Nota sobre a área do trapézio
Nas folhas de trabalho do novo programa, para chegar a uma fórmula da área de um trapézio qualquer optou-se pela construção de um triângulo equivalente ao trapézio.
Como se pode ver na figura, tomando CE que passa pelo ponto M médio de AD, os triângulos AEM e CDM são congruentes (ALA) e logo equivalentes. E o triângulo BCE tem a mesma área do trapézio e a mesma altura (distância entre as bases paralelas) sendo a base BE deste triângulo a soma das bases do trapézio BE=BA+CD, já que CD=AE.
Convém, no entanto, ter presente que pode ser mais fácil para os estudantes compreender o resultado a partir da soma das áreas dos dois triângulos em que se decompõe o trapézio: ABC e CDA, em que o primeiro para a base AB (maior do trapézio) e o segundo para CD (base menor do trapézio) têm a mesma altura- distância entre as paralelas AB e CD.
Como se pode ver na figura, tomando CE que passa pelo ponto M médio de AD, os triângulos AEM e CDM são congruentes (ALA) e logo equivalentes. E o triângulo BCE tem a mesma área do trapézio e a mesma altura (distância entre as bases paralelas) sendo a base BE deste triângulo a soma das bases do trapézio BE=BA+CD, já que CD=AE.
Convém, no entanto, ter presente que pode ser mais fácil para os estudantes compreender o resultado a partir da soma das áreas dos dois triângulos em que se decompõe o trapézio: ABC e CDA, em que o primeiro para a base AB (maior do trapézio) e o segundo para CD (base menor do trapézio) têm a mesma altura- distância entre as paralelas AB e CD.
Subscrever:
Mensagens (Atom)