18.5.10

Teorema de Pitágoras - outra demonstração

A anterior entrada- demonstração do teorema de Pitágoras - sugeria uma demonstração usando transformações de figuras em figuras equivalentes.
Na construção que se segue, pretendemos provar que a área do quadrado [ABHG], c2, é igual à soma das áreas dos quadrados [BCML], a2, e [AJIC], b2. Para isso, decompomos o quadrado em dois rectângulos, cada um deles equivalente a cada um dos quadrados.


17.5.10

A altura que divide a hipotenusa e o Teorema de Pitágoras




No 8º ano de escolaridade, a demonstração a fazer é a do Teorema de Pitágoras. Há muitas demonstrações, usando composição e decomposição de figuras, equivalência de figuras, álgebra,...
Uma das demonstrações é a que utiliza semelhança de triângulos e a divisão da hipotenusa pela altura respectiva e que pode ser retomada de muitos modos, sendo interessante seguir as transformações de cada quadrado (sobre cada cateto) em figuras equivalente até ser o rectângulo correspondente como parte do quadrado (sobre a hipotenusa).