Para cada ponto O, cada recta a e circunferência b há uma cissóide. Pode verificar as mudanças de cissóide, movimentando a circunferência b e a recta a ou os pontos a preto ligados à recta a ou à circunferência b. Pode ver o ponto C a deslocar-se sobre cada cissóide, se deslocar o ponto Q sobre a circunferência b.
4.7.09
Segunda cissóide
Tomamos um ponto O, uma recta a e uma circunferência b. Consideremos as rectas r que passam por O e cortam a recta a e a circunferênica b. O lugar geométricos dos pontos C das rectas r, tais que ||OC|=||OP|-|OQ|| é uma cissóide.
Para cada ponto O, cada recta a e circunferência b há uma cissóide. Pode verificar as mudanças de cissóide, movimentando a circunferência b e a recta a ou os pontos a preto ligados à recta a ou à circunferência b. Pode ver o ponto C a deslocar-se sobre cada cissóide, se deslocar o ponto Q sobre a circunferência b.
Para cada ponto O, cada recta a e circunferência b há uma cissóide. Pode verificar as mudanças de cissóide, movimentando a circunferência b e a recta a ou os pontos a preto ligados à recta a ou à circunferência b. Pode ver o ponto C a deslocar-se sobre cada cissóide, se deslocar o ponto Q sobre a circunferência b.
1.7.09
Primeira cissóide
Tomem-se duas curvas a e b, um ponto O e uma recta r passando por O que corte as duas curvas em P e Q.
O lugar geométrico dos pontos C da rectar tais que |OC| =||OQ|-|OP|| é a cissóide das curvas a e b relativamente ao ponto O.
No caso da construção desta entrada, tomamos duas rectas para curvas. Pode arrastar as rectas (curvas) e variar a inclinação de de uma delas usando um ponto a verde sobre b. Fixando O e as curvas, pode seguir o curso de C sobre a cissóide respectiva, deslocando P sobre a (que é acompanhado pela variação da recta r). Pode deslocar O, mantendo invariantes as curvas e verificar que para cada O é gerada uma cissóide diferente. Pode variar as curvas e as relações entre elas, mantendo O invariante, e observar as diferentes cissóides para diferentes curvas.
O lugar geométrico dos pontos C da rectar tais que |OC| =||OQ|-|OP|| é a cissóide das curvas a e b relativamente ao ponto O.
No caso da construção desta entrada, tomamos duas rectas para curvas. Pode arrastar as rectas (curvas) e variar a inclinação de de uma delas usando um ponto a verde sobre b. Fixando O e as curvas, pode seguir o curso de C sobre a cissóide respectiva, deslocando P sobre a (que é acompanhado pela variação da recta r). Pode deslocar O, mantendo invariantes as curvas e verificar que para cada O é gerada uma cissóide diferente. Pode variar as curvas e as relações entre elas, mantendo O invariante, e observar as diferentes cissóides para diferentes curvas.
Subscrever:
Mensagens (Atom)