No triângulo ABC tracemos as bissectrizes dos ângulos internos e, em seguida, as bissectrizes dos três ângulos de vértice em I:
- seja A’ a intersecção da bissectriz de BIC com o lado BC;
- seja B’ a intersecção da bissectriz de AIC com o lado AC;
- seja C’ a intersecção da bissectriz de AIB com o lado AB.
As cevianas AA’, BB’, CC’ intersectam-se no ponto Y de Yff.
No triângulo ABC, tracemos o círculo de Brocard (diâmetro OLe). Determinemos o primeiro ponto de Brocard, Br1. As cevianas referentes a Br1 definem sobre o círculo de Brocard os vértices A’B’C’ do primeiro triângulo de Brocard. O ponto de Steiner de A’B’C’ é o ponto de Lemoine Le de ABC. A verificação de que se trata do ponto de Steiner de A’B’C’ está feita com a intersecção do circuncírculo de A´B´C´com a circunferência definida pelos pontos A’’B’’C'’.