5.2.09

Da polar trilinear para o pólo

A pedido de um leitor anónimo, apresentamos a resposta à pergunta:
Dada uma recta e um triângulo de que ela é polar trilinear, como se determina o pólo correspondente?



[A.A.M.] reconstrutor de serviço



Consideramos que a resposta está na entrada Polar trilinear de 9 de Dezembro de 2008. Mas aqui fica tratado o problema posto.


Na construção dinâmica, que pode seguir por etapas, ao deslizar o cursor ao fundo da janela, parte-se da polar p e para determinar o pólo P respectivo, seguem-se os passos:

  1. Determinam-se os pontos de intersecção da recta p com os lados do triângulo ABC - P'a, P'b e P'c.

  2. O vértice Pc do triângulo ceviano de ABC que procuramos separa harmonicamente os pontos A, B e P'c e que é colinear com os pontos C e Q, este último a separar harmonicamente os pontos P'a, P'b e P'c. A determinação de Pc ou de Q faz-se pela construção de um quadrilátero completo de que CQ é diagonal

  3. Determinado Pc, imediatamente se determinam Pa e Pb tirando as rectas P'a Pc e P'bPc que intersectam os lados de ABC em Pa e Pb. A recta P'cPa passa por Pb e, por isso PaPbPc determinam um triângulo inscrito em ABC com lados a intersectar p nos pontos de intersecção desta com o triângulo original.

  4. As cevianas APa, BPb e CPc intersectam-se no pólo P, correspondente à polar trilinear p

4.2.09

Recta de Steiner

Tomemos um ponto P qualquer sobre o circuncírculo; os simétricos Pa, Pb, Pc de P em relação a cada lado são colineares; se P for o ponto de Steiner, a recta obtida é a recta de Steiner.


Na construção dinâmica, que se segue, pode verificar os resultados para qualquer P do circuncírculo e pode deslocá-lo até ser coincidente com o Ponto de Steiner e a recta dos simétricos de P ser a recta de Steiner. Também pode deslocar os vértices do triângulo.


[AAF]