[A.A.F.]
11.11.08
Ponto de reflexão de Euler
Os circuncentro, ortocentro e baricentro estão alinhados sobre a recta de Euler. As transformadas da recta de Euler por reflexão relativamente a cada um dos lados do triângulo [ABC] (como eixos da reflexão) encontram-se num ponto do circuncírculo a que damos o nome de ponto de reflexão de Euler.
[A.A.F.]
[A.A.F.]
Ponto de Fhurmann
Consideremos o triângulo ABC e o seu círculo circunscrito.
Tomemos sobre a circunferência A' ponto médio do arco BC, B' ponto médio do arco AC e C' ponto médio do arco AB.
Chama-se "triângulo de Fhurmann" ao triângulo A''B''C'', sendo A'' simétrico de A' em relação a BC, B'' simétrico de B' em relação a AC, C'' simétrico de A' em relação a AB,
O circuncírculo de A''B''C'' é o "círculo de Fhurmann" e o seu centro é o "ponto de Fhurmann.
[A.A.F.]
O segmento definido pelo incentro I e pelo ponto de Fhurmann Fh tem o centro N do círculo de nove pontos como ponto médio: Fh é simérico de I em relação a N.
O segmento definido pelo circuncentro O e pelo ponto de Fhurmann Fh tem o ponto Sp como ponto médio: Fh é simétrico de O em relação a Sp.
[A.A.F.]
Tomemos sobre a circunferência A' ponto médio do arco BC, B' ponto médio do arco AC e C' ponto médio do arco AB.
Chama-se "triângulo de Fhurmann" ao triângulo A''B''C'', sendo A'' simétrico de A' em relação a BC, B'' simétrico de B' em relação a AC, C'' simétrico de A' em relação a AB,
O circuncírculo de A''B''C'' é o "círculo de Fhurmann" e o seu centro é o "ponto de Fhurmann.
[A.A.F.]
O segmento definido pelo incentro I e pelo ponto de Fhurmann Fh tem o centro N do círculo de nove pontos como ponto médio: Fh é simérico de I em relação a N.
O segmento definido pelo circuncentro O e pelo ponto de Fhurmann Fh tem o ponto Sp como ponto médio: Fh é simétrico de O em relação a Sp.
[A.A.F.]
Subscrever:
Mensagens (Atom)