Numa dada homologia de centro O, recta limite l e eixo e, uma dada circunferência tem por imagem uma parábola. Determine o vértice dessa parábola.
7.4.08
Homologia e parábola
Exercício interactivo
Numa dada homologia de centro O, recta limite l e eixo e, uma dada circunferência tem por imagem uma parábola. Determine o vértice dessa parábola.
Numa dada homologia de centro O, recta limite l e eixo e, uma dada circunferência tem por imagem uma parábola. Determine o vértice dessa parábola.
1.4.08
Parábola e homologia
Uma homologia está definida pelo centro O, pela recta limite l e pelo eixo e. Determinar, nessa homologia, a cónica transformada da circunferência dada, tangente a l no ponto T.
O ponto T de tangência entre a circunferência e a recta limite l vai ter como homólogo o ponto do infinito da cónica que, por consequência, será uma parábola. A direcção do eixo da parábola é, portanto, a recta OT.
Sabemos que a tangente à parábola no seu vértice é perpendicular ao eixo. Logo, a recta OL, perpendicular a OT dá a direcção da tangente no vértice. Se por L traçarmos a tangente à circunferência, o ponto V de tangência tem como homólogo o ponto V´, vértice da parábola.
Para definir a parábola basta obter os transformados de dois pontos da circunferência; determinados esses dois pontos e os seus simétricos em relação ao eixo, ficamos com cinco pontos.
O ponto T de tangência entre a circunferência e a recta limite l vai ter como homólogo o ponto do infinito da cónica que, por consequência, será uma parábola. A direcção do eixo da parábola é, portanto, a recta OT.
Sabemos que a tangente à parábola no seu vértice é perpendicular ao eixo. Logo, a recta OL, perpendicular a OT dá a direcção da tangente no vértice. Se por L traçarmos a tangente à circunferência, o ponto V de tangência tem como homólogo o ponto V´, vértice da parábola.
Para definir a parábola basta obter os transformados de dois pontos da circunferência; determinados esses dois pontos e os seus simétricos em relação ao eixo, ficamos com cinco pontos.
Subscrever:
Mensagens (Atom)